Gazit Doron
Institute for Nuclear Theory, University of Washington, PO Box 351550, Seattle, Washington 98195, USA.
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Oct;80(4 Pt 1):041117. doi: 10.1103/PhysRevE.80.041117. Epub 2009 Oct 15.
The anomalous exponents governing the long-wavelength behavior of the flat phase of physical crystalline membranes are calculated within a self-consistent screening approximation (SCSA) applied to second order expansion in 1/dC ( dC is the codimension), extending the seminal work of Le Doussal and Radzihovsky [Phys. Rev. Lett. 69, 1209 (1992)]. In particular, the bending rigidity is found to harden algebraically in the long-wavelength limit with an exponent eta=0.789... , which is used to extract the elasticity softening exponent eta(u)=0.422... , and the roughness exponent zeta=0.605... . The scaling relation eta(u)=2-2eta is proven to hold to all orders in SCSA. Further, applying the SCSA to an expansion in 1/dC , is found to be essential, as no solution to the self-consistent equations is found in a two-bubble level, which is the naive second-order expansion. Surprisingly, even though the expansion parameter for physical membrane is 1/dC=1 , the SCSA applied to second-order expansion deviates only slightly from the first order, increasing zeta by mere 0.016. This supports the high quality of the SCSA for physical crystalline membranes, as well as improves the comparison to experiments and numerical simulations of these systems. The prediction of SCSA applied to first order expansion for the Poisson ratio is shown to be exact to all orders.
在应用于1/dC二阶展开的自洽屏蔽近似(SCSA)中,计算了控制物理晶体膜平坦相长波行为的反常指数,扩展了勒杜萨尔和拉齐霍夫斯基的开创性工作[《物理评论快报》69, 1209 (1992)]。特别地,发现弯曲刚度在长波极限下以指数η = 0.789…代数硬化,该指数用于提取弹性软化指数η(u) = 0.422…和粗糙度指数ζ = 0.605…。证明了标度关系η(u) = 2 - 2η在SCSA的所有阶次下都成立。此外,发现将SCSA应用于1/dC展开是至关重要的,因为在双泡水平(即朴素的二阶展开)中未找到自洽方程的解。令人惊讶的是,尽管物理膜的展开参数为1/dC = 1,但应用于二阶展开的SCSA仅比一阶略有偏差,ζ仅增加了0.016。这支持了SCSA对物理晶体膜的高质量,也改善了与这些系统的实验和数值模拟的比较。应用于一阶展开的SCSA对泊松比的预测在所有阶次下都被证明是精确的。