Egami Takeshi, Suzuki Koshiro, Watanabe Katsuhiro
Analysis Technology Development Center, Canon, Inc., 30-2 Shimomaruko 3-chome, Ohta-ku, Tokyo 146-8501, Japan.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Nov;88(5):052123. doi: 10.1103/PhysRevE.88.052123. Epub 2013 Nov 19.
The dc electric field effect on the anomalous exponent of the hopping conduction in the disorder model is investigated. First, we explain the model and derive an analytical expression of the effective waiting time for the general case. We show that the exponent depends on the external field. Then we focus on a one-dimensional system in order to illustrate the features of the anomalous exponent. We derive approximate expressions of the anomalous exponent of the system analytically. For the case of a weak field, the anomalous exponent is consistent with that of diffusive systems. This is consistent with the treatments of Barkai et al. [Phys. Rev. E 63, 046118 (2001)] and our result supports their theory. On the other hand, for the case of a strong field and a strong disorder, the time evolution of the exponent clearly differs from that in the weak field. The exponent is consistent with the well-known expression of the anomalous exponent in the multiple trapping model at mesoscopic time scales. In the long-time limit, a transition of the anomalous exponent to the same value of the weak field occurs. These findings are verified by the Monte Carlo simulation.
研究了直流电场对无序模型中跳跃传导反常指数的影响。首先,我们解释该模型并推导一般情况下有效等待时间的解析表达式。我们表明该指数取决于外部场。然后我们聚焦于一维系统以说明反常指数的特征。我们解析地推导了该系统反常指数的近似表达式。对于弱场情况,反常指数与扩散系统的一致。这与巴尔凯等人[《物理评论E》63, 046118 (2001)]的处理一致,我们的结果支持了他们的理论。另一方面,对于强场和强无序情况,指数的时间演化明显不同于弱场情况。在介观时间尺度上,该指数与多陷阱模型中著名的反常指数表达式一致。在长时间极限下,反常指数会转变为与弱场相同的值。这些发现通过蒙特卡罗模拟得到了验证。