Laboratoire de Physiologie Moléculaire de la Cellule, Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles, rue des Pr Jeener et Brachet, 6041 Gosselies, Belgium.
J Biol Chem. 2010 Jan 8;285(2):855-65. doi: 10.1074/jbc.M109.015263. Epub 2009 Nov 11.
When yeast cells detect external amino acids via their permease-like Ssy1 sensor, the cytosolic precursor forms of Stp1 and Stp2 transcription factors are activated by endoproteolytic removal of their N-terminal domains, a reaction catalyzed by the Ssy5 endoprotease. The processed Stp factors then migrate into the nucleus, where they activate transcription of several amino acid permease genes including AGP1. We report here that the STP1 and STP2 genes most likely derive from the whole genome duplication that occurred in a yeast ancestor. Although Stp1 and Stp2 have been considered redundant, we provide evidence that they functionally diverged during evolution. Stp2 is the only factor processed when amino acids are present at low concentration, and the transcriptional activation of AGP1 promoted by Stp2 is moderate. Furthermore, only Stp2 can sustain Agp1-dependent utilization of amino acids at low concentration. In contrast, Stp1 is only processed when amino acids are present at high concentration, and it promotes higher level transcriptional activation of AGP1. Domain swapping experiments show that the N-terminal domains of Stp1 and Stp2 are responsible for these proteins being cleaved at different amino acid concentrations. Last, induction of the DIP5 permease gene by amino acids depends on Stp2 but not Stp1. We propose that post-whole genome duplication co-conservation of the STP1 and STP2 genes was favored by functional divergence of their products, likely conferring to cells an increased ability to adapt to various amino acid supply conditions.
当酵母细胞通过其渗透酶样 Ssy1 传感器检测到外部氨基酸时,Stp1 和 Stp2 转录因子的细胞质前体通过 N 端结构域的内肽酶切割被激活,该反应由 Ssy5 内肽酶催化。加工后的 Stp 因子随后迁移到细胞核内,在那里它们激活包括 AGP1 在内的几个氨基酸渗透酶基因的转录。我们在这里报告,STP1 和 STP2 基因很可能来自于酵母祖先发生的全基因组复制。尽管 Stp1 和 Stp2 被认为是冗余的,但我们提供的证据表明它们在进化过程中功能上已经分化。当氨基酸浓度低时,只有 Stp2 被加工,并且由 Stp2 促进的 AGP1 的转录激活是适度的。此外,只有 Stp2 能够维持在低浓度下依赖 Agp1 的氨基酸利用。相比之下,当氨基酸浓度高时,只有 Stp1 被加工,并且它促进 AGP1 的更高水平的转录激活。结构域交换实验表明,Stp1 和 Stp2 的 N 端结构域负责这些蛋白在不同的氨基酸浓度下被切割。最后,氨基酸对 DIP5 渗透酶基因的诱导依赖于 Stp2 而不是 Stp1。我们提出,STP1 和 STP2 基因在全基因组复制后的共同保守性是由其产物的功能分化所青睐的,这可能赋予细胞适应各种氨基酸供应条件的能力增加。