Suppr超能文献

中间神经元回路调节视网膜双极细胞的抑制作用。

Interneuron circuits tune inhibition in retinal bipolar cells.

机构信息

Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA.

出版信息

J Neurophysiol. 2010 Jan;103(1):25-37. doi: 10.1152/jn.00458.2009. Epub 2009 Nov 11.

Abstract

While connections between inhibitory interneurons are common circuit elements, it has been difficult to define their signal processing roles because of the inability to activate these circuits using natural stimuli. We overcame this limitation by studying connections between inhibitory amacrine cells in the retina. These interneurons form spatially extensive inhibitory networks that shape signaling between bipolar cell relay neurons to ganglion cell output neurons. We investigated how amacrine cell networks modulate these retinal signals by selectively activating the networks with spatially defined light stimuli. The roles of amacrine cell networks were assessed by recording their inhibitory synaptic outputs in bipolar cells that suppress bipolar cell output to ganglion cells. When the amacrine cell network was activated by large light stimuli, the inhibitory connections between amacrine cells unexpectedly depressed bipolar cell inhibition. Bipolar cell inhibition elicited by smaller light stimuli or electrically activated feedback inhibition was not suppressed because these stimuli did not activate the connections between amacrine cells. Thus the activation of amacrine cell circuits with large light stimuli can shape the spatial sensitivity of the retina by limiting the spatial extent of bipolar cell inhibition. Because inner retinal inhibition contributes to ganglion cell surround inhibition, in part, by controlling input from bipolar cells, these connections may refine the spatial properties of the retinal output. This functional role of interneuron connections may be repeated throughout the CNS.

摘要

虽然抑制性中间神经元的连接是常见的电路元件,但由于无法使用自然刺激来激活这些电路,因此很难定义它们的信号处理作用。我们通过研究视网膜中的抑制性无长突细胞之间的连接来克服这一限制。这些中间神经元形成空间上广泛的抑制性网络,从而调节双极细胞中继神经元与神经节细胞输出神经元之间的信号传递。我们通过使用空间定义的光刺激选择性地激活这些网络,研究了无长突细胞网络如何调节这些视网膜信号。通过记录抑制性双极细胞输出的抑制性突触输出来评估无长突细胞网络的作用,这些输出抑制双极细胞向神经节细胞的输出。当大光刺激激活无长突细胞网络时,无长突细胞之间的抑制性连接出人意料地抑制了双极细胞抑制。由于这些刺激不会激活无长突细胞之间的连接,因此较小的光刺激或电激活的反馈抑制所引起的双极细胞抑制不会被抑制。因此,用光强较大的光刺激激活无长突细胞电路可以通过限制双极细胞抑制的空间范围来塑造视网膜的空间灵敏度。由于内视网膜抑制通过控制双极细胞的输入部分有助于神经节细胞环绕抑制,因此这些连接可能会改善视网膜输出的空间特性。神经元连接的这种功能作用可能在中枢神经系统中反复出现。

相似文献

4
Inhibition to retinal rod bipolar cells is regulated by light levels.光照水平调节视网膜双极细胞的抑制作用。
J Neurophysiol. 2013 Jul;110(1):153-61. doi: 10.1152/jn.00872.2012. Epub 2013 Apr 17.

引用本文的文献

本文引用的文献

1
Parvalbumin-immunoreactive amacrine cells of macaque retina.猕猴视网膜中表达小白蛋白免疫反应性的无长突细胞
Vis Neurosci. 2009 May-Jun;26(3):287-96. doi: 10.1017/S0952523809090075. Epub 2009 May 13.
3
Amacrine-to-amacrine cell inhibition in the rabbit retina.兔视网膜中无长突细胞对无长突细胞的抑制作用。
J Neurophysiol. 2008 Oct;100(4):2077-88. doi: 10.1152/jn.90417.2008. Epub 2008 Jul 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验