Suppr超能文献

对抗刺激镇痛的脑和脑脊液过程。

Cerebral and cerebrospinal processes underlying counterirritation analgesia.

作者信息

Piché Mathieu, Arsenault Marianne, Rainville Pierre

机构信息

Département de Physiologie, Université de Montréal, Montréal, Quebec H3T 1J4, Canada.

出版信息

J Neurosci. 2009 Nov 11;29(45):14236-46. doi: 10.1523/JNEUROSCI.2341-09.2009.

Abstract

Pain is a complex experience involving extensive interactions between brain and spinal cord processes. Various interventions that modulate pain, such as the application of a competing noxious stimulus (counterirritation), are thought to involve cerebrospinal regulation through diffuse noxious inhibitory controls (DNICs). However, no study has yet examined the relation between brain and spinal cord activity during counterirritation analgesia in humans. This fMRI study investigates brain responses to phasic painful electrical stimulation administered to the sural nerve to evoke a spinal nociceptive response (RIII reflex) before, during and after counterirritation induced by the immersion of the left contralateral foot in cold water. Responses are compared with a control condition without counterirritation. As expected, counterirritation produced robust pain inhibition with residual analgesia persisting during the recovery period. In contrast, RIII reflex amplitude was significantly decreased by counterirritation only in a subset of subjects. Modulatory effects of counterirritation on pain perception and spinal nociception were paralleled by decreased shock-evoked activity in pain-related areas. Individual changes in shock-evoked brain activity were specifically related to analgesia in primary somatosensory cortex (SI), anterior cingulate cortex and amygdala, and to RIII modulation in supplementary motor area and orbitofrontal cortex (OFC). Moreover, sustained activation induced by the counterirritation stimulus in the OFC predicted shock-pain decrease while sustained activity in SI and the periaqueductal gray matter predicted RIII modulation. These results provide evidence for the implication of at least two partly separable neural mechanisms underlying the effects of counterirritation on pain and spinal nociception in humans.

摘要

疼痛是一种复杂的体验,涉及大脑和脊髓过程之间广泛的相互作用。各种调节疼痛的干预措施,如施加竞争性有害刺激(对抗刺激),被认为是通过弥漫性有害抑制控制(DNICs)参与脑脊液调节。然而,尚无研究考察人类在对抗刺激镇痛过程中大脑与脊髓活动之间的关系。这项功能磁共振成像(fMRI)研究调查了在左侧对侧足部浸入冷水中诱导对抗刺激之前、期间和之后,对腓肠神经施加阶段性疼痛电刺激以诱发脊髓伤害性反应(RIII反射)时的大脑反应。将这些反应与无对抗刺激的对照条件进行比较。正如预期的那样,对抗刺激产生了强大的疼痛抑制作用,恢复期仍有残余镇痛效果。相比之下,仅在一部分受试者中,对抗刺激使RIII反射幅度显著降低。对抗刺激对疼痛感知和脊髓伤害感受的调节作用与疼痛相关区域中电击诱发活动的减少并行。电击诱发的大脑活动的个体变化与初级体感皮层(SI)、前扣带回皮层和杏仁核中的镇痛作用以及辅助运动区和眶额皮层(OFC)中的RIII调节作用具体相关。此外,OFC中对抗刺激刺激诱导的持续激活预测了电击疼痛的减轻,而SI和导水管周围灰质中的持续活动预测了RIII调节。这些结果为人类对抗刺激对疼痛和脊髓伤害感受的影响背后至少两种部分可分离的神经机制的作用提供了证据。

相似文献

1
Cerebral and cerebrospinal processes underlying counterirritation analgesia.
J Neurosci. 2009 Nov 11;29(45):14236-46. doi: 10.1523/JNEUROSCI.2341-09.2009.
2
Dissection of perceptual, motor and autonomic components of brain activity evoked by noxious stimulation.
Pain. 2010 Jun;149(3):453-462. doi: 10.1016/j.pain.2010.01.005. Epub 2010 Apr 22.
4
Intravenous adenosine activates diffuse nociceptive inhibitory controls in humans.
J Appl Physiol (1985). 2013 Sep 1;115(5):697-703. doi: 10.1152/japplphysiol.00027.2013. Epub 2013 Jul 18.
5
Decreased pain inhibition in irritable bowel syndrome depends on altered descending modulation and higher-order brain processes.
Neuroscience. 2011 Nov 10;195:166-75. doi: 10.1016/j.neuroscience.2011.08.040. Epub 2011 Aug 23.
6
Self-regulation of acute experimental pain with and without biofeedback using spinal nociceptive responses.
Neuroscience. 2013 Feb 12;231:102-10. doi: 10.1016/j.neuroscience.2012.11.011. Epub 2012 Nov 29.
7
Encoding of nociceptive thermal stimuli by diffuse noxious inhibitory controls in humans.
J Neurophysiol. 1989 Nov;62(5):1028-38. doi: 10.1152/jn.1989.62.5.1028.
8
Spinal and supraspinal correlates of nociception in man.
Pain. 1991 Jun;45(3):269-281. doi: 10.1016/0304-3959(91)90051-X.

引用本文的文献

1
Music interferes with expectation-induced pain modulation: a controlled cross-over experimental study.
Pain Rep. 2025 Aug 20;10(5):e1314. doi: 10.1097/PR9.0000000000001314. eCollection 2025 Oct.
2
Changes in conditioned pain modulation using anti-Parkinson drugs in patients with Parkinson's disease.
eNeurologicalSci. 2025 Jul 14;40:100574. doi: 10.1016/j.ensci.2025.100574. eCollection 2025 Sep.
5
6
Involvement of propriospinal processes in conditioned pain modulation.
Pain. 2024 Sep 1;165(9):1907-1913. doi: 10.1097/j.pain.0000000000003217. Epub 2024 Mar 27.
7
Neurophysiological oscillatory markers of hypoalgesia in conditioned pain modulation.
Pain Rep. 2023 Oct 23;8(6):e1096. doi: 10.1097/PR9.0000000000001096. eCollection 2023 Dec.

本文引用的文献

1
Periaqueductal gray neurons project to spinally projecting GABAergic neurons in the rostral ventromedial medulla.
Pain. 2008 Nov 30;140(2):376-386. doi: 10.1016/j.pain.2008.09.009. Epub 2008 Oct 15.
2
The orbitofrontal cortex and beyond: from affect to decision-making.
Prog Neurobiol. 2008 Nov;86(3):216-44. doi: 10.1016/j.pneurobio.2008.09.001. Epub 2008 Sep 7.
3
The neural bases of emotion regulation: reappraisal and suppression of negative emotion.
Biol Psychiatry. 2008 Mar 15;63(6):577-86. doi: 10.1016/j.biopsych.2007.05.031. Epub 2007 Sep 21.
5
Depression of the human nociceptive withdrawal reflex by segmental and heterosegmental intramuscular electrical stimulation.
Clin Neurophysiol. 2007 Jul;118(7):1626-32. doi: 10.1016/j.clinph.2007.04.007. Epub 2007 May 15.
6
The anxiolytic effects of midazolam during anticipation to pain revealed using fMRI.
Magn Reson Imaging. 2007 Jul;25(6):801-10. doi: 10.1016/j.mri.2007.03.016. Epub 2007 Apr 26.
7
Descending analgesia--when the spine echoes what the brain expects.
Pain. 2007 Jul;130(1-2):137-43. doi: 10.1016/j.pain.2006.11.011. Epub 2007 Jan 9.
8
Anticipatory brainstem activity predicts neural processing of pain in humans.
Pain. 2007 Mar;128(1-2):101-10. doi: 10.1016/j.pain.2006.09.001. Epub 2006 Oct 27.
9
Mechanisms of placebo analgesia: rACC recruitment of a subcortical antinociceptive network.
Pain. 2006 Jan;120(1-2):8-15. doi: 10.1016/j.pain.2005.08.027. Epub 2005 Dec 20.
10
Control over brain activation and pain learned by using real-time functional MRI.
Proc Natl Acad Sci U S A. 2005 Dec 20;102(51):18626-31. doi: 10.1073/pnas.0505210102. Epub 2005 Dec 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验