Suppr超能文献

骨架协调性在 RNA 诱导沉默复合物识别 mRNA 中的关键作用。

Critical role of backbone coordination in the mRNA recognition by RNA induced silencing complex.

机构信息

Warshel Institute for Computational Biology, School of Life and Health Sciences, The Chinese University of Hong Kong (Shenzhen), Shenzhen, Guangdong, 518172, China.

Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.

出版信息

Commun Biol. 2021 Nov 30;4(1):1345. doi: 10.1038/s42003-021-02822-7.

Abstract

Despite its functional importance, the molecular mechanism underlying target mRNA recognition by Argonaute (Ago) remains largely elusive. Based on extensive all-atom molecular dynamics simulations, we constructed quasi-Markov State Model (qMSM) to reveal the dynamics during recognition at position 6-7 in the seed region of human Argonaute 2 (hAgo2). Interestingly, we found that the slowest mode of motion therein is not the gRNA-target base-pairing, but the coordination of the target phosphate groups with a set of positively charged residues of hAgo2. Moreover, the ability of Helix-7 to approach the PIWI and MID domains was found to reduce the effective volume accessible to the target mRNA and therefore facilitate both the backbone coordination and base-pair formation. Further mutant simulations revealed that alanine mutation of the D358 residue on Helix-7 enhanced a trap state to slow down the loading of target mRNA. Similar trap state was also observed when wobble pairs were introduced in g6 and g7, indicating the role of Helix-7 in suppressing non-canonical base-paring. Our study pointed to a general mechanism for mRNA recognition by eukaryotic Agos and demonstrated the promise of qMSM in investigating complex conformational changes of biomolecular systems.

摘要

尽管 Argonaute(Ago)识别靶 mRNA 的功能非常重要,但它的分子机制在很大程度上仍然难以捉摸。基于广泛的全原子分子动力学模拟,我们构建了准马尔可夫状态模型(qMSM),以揭示人类 Argonaute 2(hAgo2)种子区域第 6-7 位识别过程中的动力学。有趣的是,我们发现其中最慢的运动模式不是 gRNA-靶碱基配对,而是靶磷酸盐与一组带正电荷的 hAgo2 残基的协调。此外,发现 Helix-7 接近 PIWI 和 MID 结构域的能力降低了靶 mRNA 的有效可及体积,从而促进了骨架协调和碱基配对形成。进一步的突变模拟表明,Helix-7 上 D358 残基的丙氨酸突变增强了一个陷阱状态,从而减缓了靶 mRNA 的加载。在 g6 和 g7 中引入摆动对也观察到类似的陷阱状态,表明 Helix-7 在抑制非规范碱基配对方面的作用。我们的研究为真核生物 Agos 识别 mRNA 提供了一个普遍机制,并证明了 qMSM 在研究生物分子系统复杂构象变化方面的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c6f/8632932/59994df36271/42003_2021_2822_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验