Suppr超能文献

使用正态模式朗之万方法研究大分子的多尺度动力学

Multiscale dynamics of macromolecules using normal mode Langevin.

作者信息

Izaguirre J A, Sweet C R, Pande V S

机构信息

Dept. of Computer Science and Engineering, Univ. of Notre Dame, Notre Dame, IN 46556, USA.

出版信息

Pac Symp Biocomput. 2010:240-51. doi: 10.1142/9789814295291_0026.

Abstract

Proteins and other macromolecules have coupled dynamics over multiple time scales (from femtosecond to millisecond and beyond) that make resolving molecular dynamics challenging. We present an approach based on periodically decomposing the dynamics of a macromolecule into slow and fast modes based on a scalable coarse-grained normal mode analysis. A Langevin equation is used to propagate the slowest degrees of freedom while minimizing the nearly instantaneous degrees of freedom. We present numerical results showing that time steps of up to 1000 fs can be used, with real speedups of up to 200 times over plain molecular dynamics. We present results of successfully folding the Fip35 mutant of WW domain.

摘要

蛋白质和其他大分子在多个时间尺度(从飞秒到毫秒及更长时间)上具有耦合动力学,这使得解析分子动力学具有挑战性。我们提出了一种基于可扩展粗粒度正常模式分析将大分子动力学周期性地分解为慢模式和快模式的方法。使用朗之万方程来传播最慢的自由度,同时最小化几乎瞬时的自由度。我们给出的数值结果表明,可以使用高达1000飞秒的时间步长,与普通分子动力学相比实际加速倍数高达200倍。我们展示了成功折叠WW结构域的Fip35突变体的结果。

相似文献

1
Multiscale dynamics of macromolecules using normal mode Langevin.
Pac Symp Biocomput. 2010:240-51. doi: 10.1142/9789814295291_0026.
3
OpenAWSEM with Open3SPN2: A fast, flexible, and accessible framework for large-scale coarse-grained biomolecular simulations.
PLoS Comput Biol. 2021 Feb 12;17(2):e1008308. doi: 10.1371/journal.pcbi.1008308. eCollection 2021 Feb.
4
5
Markov state models from hierarchical density-based assignment.
J Chem Phys. 2021 Aug 7;155(5):054102. doi: 10.1063/5.0056748.
6
Coarse-Grained Molecular Dynamics Simulations of Membrane Proteins: A Practical Guide.
Methods Mol Biol. 2021;2302:253-273. doi: 10.1007/978-1-0716-1394-8_14.
7
Coarse-Grained Langevin Equation for Protein Dynamics: Global Anisotropy and a Mode Approach to Local Complexity.
J Phys Chem B. 2015 Jul 23;119(29):9195-211. doi: 10.1021/jp509473z. Epub 2014 Nov 20.
8
Large multiprotein structures modeling and simulation: the need for mesoscopic models.
Methods Mol Biol. 2008;484:537-58. doi: 10.1007/978-1-59745-398-1_32.
10
A Multiscale Computational Model for Simulating the Kinetics of Protein Complex Assembly.
Methods Mol Biol. 2018;1764:401-411. doi: 10.1007/978-1-4939-7759-8_26.

引用本文的文献

1
Structure and post-translational modification of the prostaglandin transporter.
Commun Biol. 2025 Jul 18;8(1):1066. doi: 10.1038/s42003-025-08510-0.
2
Umbrella Refinement of Ensembles-An Alternative View of Ensemble Optimization.
Molecules. 2025 Jun 3;30(11):2449. doi: 10.3390/molecules30112449.
3
Thermodynamics of Water Displacement from Binding Sites and its Contributions to Supramolecular and Biomolecular Affinity.
Angew Chem Int Ed Engl. 2025 Aug 25;64(35):e202505713. doi: 10.1002/anie.202505713. Epub 2025 Jun 16.
4
for Investigating Conformational Transitions and Environmental Interactions of Proteins.
J Chem Theory Comput. 2025 May 27;21(10):5304-5321. doi: 10.1021/acs.jctc.5c00256. Epub 2025 May 13.
5
Increasing the Accuracy and Robustness of the CHARMM General Force Field with an Expanded Training Set.
J Chem Theory Comput. 2025 Mar 25;21(6):3044-3065. doi: 10.1021/acs.jctc.5c00046. Epub 2025 Mar 3.
8
Substrate engagement by the intramembrane metalloprotease SpoIVFB.
Nat Commun. 2024 Oct 17;15(1):8276. doi: 10.1038/s41467-024-52634-6.
9
Employing Metadynamics to Predict the Membrane Partitioning of Carboxy-2-Azirine Natural Products.
J Phys Chem B. 2024 Sep 12;128(36):8771-8781. doi: 10.1021/acs.jpcb.4c03411. Epub 2024 Sep 3.
10
Elucidating the complex membrane binding of a protein with multiple anchoring domains using extHMMM.
PLoS Comput Biol. 2024 Jul 8;20(7):e1011421. doi: 10.1371/journal.pcbi.1011421. eCollection 2024 Jul.

本文引用的文献

1
Computing generalized Langevin equations and generalized Fokker-Planck equations.
Proc Natl Acad Sci U S A. 2009 Jul 7;106(27):10884-9. doi: 10.1073/pnas.0902633106. Epub 2009 Jun 19.
3
The structural dynamics of macromolecular processes.
Curr Opin Cell Biol. 2009 Feb;21(1):97-108. doi: 10.1016/j.ceb.2009.01.022. Epub 2009 Feb 14.
4
Normal mode partitioning of Langevin dynamics for biomolecules.
J Chem Phys. 2008 Apr 14;128(14):145101. doi: 10.1063/1.2883966.
5
Ten-microsecond molecular dynamics simulation of a fast-folding WW domain.
Biophys J. 2008 May 15;94(10):L75-7. doi: 10.1529/biophysj.108.131565. Epub 2008 Mar 13.
6
Low frequency mechanical modes of viral capsids: an atomistic approach.
Phys Rev Lett. 2008 Jan 18;100(2):028101. doi: 10.1103/PhysRevLett.100.028101. Epub 2008 Jan 14.
7
Can conformational change be described by only a few normal modes?
Biophys J. 2006 Mar 1;90(5):1583-93. doi: 10.1529/biophysj.105.070045. Epub 2005 Dec 16.
8
9
A simple method for faster nonbonded force evaluations.
J Comput Chem. 2005 May;26(7):691-8. doi: 10.1002/jcc.20211.
10
A normal mode analysis of structural plasticity in the biomolecular motor F(1)-ATPase.
J Mol Biol. 2004 Jul 2;340(2):345-72. doi: 10.1016/j.jmb.2004.04.044.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验