Suppr超能文献

特发性肺纤维化中气体交换受损的机制。

Mechanisms of gas-exchange impairment in idiopathic pulmonary fibrosis.

作者信息

Agustí A G, Roca J, Gea J, Wagner P D, Xaubet A, Rodriguez-Roisin R

机构信息

Servei de Pneumologia, Hospital Clínic, Universitat de Barcelona, Spain.

出版信息

Am Rev Respir Dis. 1991 Feb;143(2):219-25. doi: 10.1164/ajrccm/143.2.219.

Abstract

To investigate the mechanisms of pulmonary gas-exchange impairment in idiopathic pulmonary fibrosis (IPF) and to evaluate their potential relationship to the CO diffusing capacity (DLCO), we studied 15 patients with IPF (mean DLCO, 52% of predicted) at rest (breathing room air and pure O2) and during exercise. We measured pulmonary hemodynamics and respiratory gas-exchange variables, and we separated the ventilation-perfusion (VAQ) mismatching and O2 diffusion limitation components of arterial hypoxemia using the multiple inert gas elimination technique. At rest VA/Q mismatching was moderate (2 to 4% of cardiac output perfusing poorly or unventilated lung units), and 19% of AaPO2 was due to O2 diffusion limitation. During exercise VA/Q mismatch did not worsen but the diffusion component of arterial hypoxemia increased markedly (40% AaPO2, p less than 0.005). We observed that those patients with higher pulmonary vascular tone (more release of hypoxic pulmonary vasoconstriction) showed less pulmonary hypertension during exercise (p less than 0.05), less VA/Q mismatching [at rest (p less than 0.005) and during exercise (p less than 0.0025)], and higher arterial PO2 during exercise (p = 0.01). We also found that DLCO corrected for alveolar volume (KCO) correlated with the mechanisms of hypoxemia during exercise [VA/Q mismatching (p less than 0.025) and O2 diffusion limitation (p less than 0.05)] and with the increase in pulmonary vascular resistance elicited by exercise (p less than 0.005). In conclusion, we showed that the abnormalities of the pulmonary vasculature are key to modulate gas exchange in IPF, especially during exercise.(ABSTRACT TRUNCATED AT 250 WORDS)

摘要

为了研究特发性肺纤维化(IPF)中肺气体交换受损的机制,并评估其与一氧化碳弥散能力(DLCO)的潜在关系,我们研究了15例IPF患者(平均DLCO为预测值的52%),分别在静息状态(呼吸室内空气和纯氧)及运动期间进行观察。我们测量了肺血流动力学和呼吸气体交换变量,并使用多惰性气体消除技术分离出动脉低氧血症的通气-灌注(VA/Q)不匹配和氧扩散限制成分。静息时VA/Q不匹配程度为中度(2%至4%的心输出量灌注到通气不良或未通气的肺单位),19%的肺泡-动脉氧分压差(AaPO2)是由氧扩散限制所致。运动期间VA/Q不匹配未加重,但动脉低氧血症的扩散成分显著增加(40%的AaPO2,p<0.005)。我们观察到,那些肺血管张力较高(更多地释放低氧性肺血管收缩)的患者在运动期间肺动脉高压较轻(p<0.05),VA/Q不匹配程度较低[静息时(p<0.005)和运动期间(p<0.0025)],运动期间动脉血氧分压较高(p=0.01)。我们还发现,经肺泡容积校正的DLCO(KCO)与运动期间低氧血症的机制[VA/Q不匹配(p<0.025)和氧扩散限制(p<0.05)]以及运动引起的肺血管阻力增加相关(p<0.005)。总之,我们表明肺血管系统异常是调节IPF中气体交换的关键,尤其是在运动期间。(摘要截短至250字)

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验