Suppr超能文献

语音监测神经网络与公开言语产生及理解神经网络重叠:一项序列时空独立成分分析研究。

Neural network of speech monitoring overlaps with overt speech production and comprehension networks: a sequential spatial and temporal ICA study.

作者信息

van de Ven Vincent, Esposito Fabrizio, Christoffels Ingrid K

机构信息

Department of Cognitive Neuroscience, Faculty of Psychology, Maastricht University, Maastricht, The Netherlands.

出版信息

Neuroimage. 2009 Oct 1;47(4):1982-91. doi: 10.1016/j.neuroimage.2009.05.057. Epub 2009 May 27.

Abstract

The neural correlates of speech monitoring overlap with neural correlates of speech comprehension and production. However, it is unclear how these correlates are organized within functional connectivity networks, and how these networks interact to subserve speech monitoring. We applied spatial and temporal independent component analysis (sICA and tICA) to a functional magnetic resonance imaging (fMRI) experiment involving overt speech production, comprehension and monitoring. SICA and tICA respectively decompose fMRI data into spatial and temporal components that can be interpreted as distributed estimates of functional connectivity and concurrent temporal dynamics in one or more regions of fMRI activity. Using sICA we found multiple connectivity components that were associated with speech perception (auditory and left fronto-temporal components) and production (bilateral central sulcus and default-mode components), but not with speech monitoring. In order to further investigate if speech monitoring could be mapped in the auditory cortex as a unique temporal process, we applied tICA to voxels of the sICA auditory component. Amongst the temporal components we found a single, unique component that matched the speech monitoring temporal pattern. We used this temporal component as a new predictor for whole-brain activity and found that it correlated positively with bilateral auditory cortex, and negatively with the supplementary motor area (SMA). Psychophysiological interaction analysis of task and activity in bilateral auditory cortex and SMA showed that functional connectivity changed with task conditions. These results suggest that speech monitoring entails a dynamic coupling between different functional networks. Furthermore, we demonstrate that overt speech comprises multiple networks that are associated with specific speech-related processes. We conclude that the sequential combination of sICA and tICA is a powerful approach for the analysis of complex, overt speech tasks.

摘要

言语监测的神经关联与言语理解和产生的神经关联存在重叠。然而,目前尚不清楚这些关联在功能连接网络中是如何组织的,以及这些网络如何相互作用以支持言语监测。我们将空间和时间独立成分分析(sICA和tICA)应用于一项功能磁共振成像(fMRI)实验,该实验涉及明显的言语产生、理解和监测。sICA和tICA分别将fMRI数据分解为空间和时间成分,这些成分可被解释为fMRI活动的一个或多个区域中功能连接和并发时间动态的分布式估计。使用sICA,我们发现了多个与言语感知(听觉和左额颞成分)和产生(双侧中央沟和默认模式成分)相关的连接成分,但与言语监测无关。为了进一步研究言语监测是否可以作为一种独特的时间过程映射到听觉皮层中,我们将tICA应用于sICA听觉成分的体素。在时间成分中,我们发现了一个与言语监测时间模式相匹配的单一独特成分。我们将这个时间成分用作全脑活动的新预测指标,发现它与双侧听觉皮层呈正相关,与辅助运动区(SMA)呈负相关。对双侧听觉皮层和SMA中的任务和活动进行的心理生理交互分析表明,功能连接随任务条件而变化。这些结果表明,言语监测需要不同功能网络之间的动态耦合。此外,我们证明明显的言语包含与特定言语相关过程相关的多个网络。我们得出结论,sICA和tICA的顺序组合是分析复杂的明显言语任务的有力方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验