Cellular and Molecular Microbiology Division, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany.
PLoS Pathog. 2009 Nov;5(11):e1000660. doi: 10.1371/journal.ppat.1000660. Epub 2009 Nov 13.
Many bacterial pathogens achieve resistance to defensin-like cationic antimicrobial peptides (CAMPs) by the multiple peptide resistance factor (MprF) protein. MprF plays a crucial role in Staphylococcus aureus virulence and it is involved in resistance to the CAMP-like antibiotic daptomycin. MprF is a large membrane protein that modifies the anionic phospholipid phosphatidylglycerol with l-lysine, thereby diminishing the bacterial affinity for CAMPs. Its widespread occurrence recommends MprF as a target for novel antimicrobials, although the mode of action of MprF has remained incompletely understood. We demonstrate that the hydrophilic C-terminal domain and six of the fourteen proposed trans-membrane segments of MprF are sufficient for full-level lysyl-phosphatidylglycerol (Lys-PG) production and that several conserved amino acid positions in MprF are indispensable for Lys-PG production. Notably, Lys-PG production did not lead to efficient CAMP resistance and most of the Lys-PG remained in the inner leaflet of the cytoplasmic membrane when the large N-terminal hydrophobic domain of MprF was absent, indicating a crucial role of this protein part. The N-terminal domain alone did not confer CAMP resistance or repulsion of the cationic test protein cytochrome c. However, when the N-terminal domain was coexpressed with the Lys-PG synthase domain either in one protein or as two separate proteins, full-level CAMP resistance was achieved. Moreover, only coexpression of the two domains led to efficient Lys-PG translocation to the outer leaflet of the membrane and to full-level cytochrome c repulsion, indicating that the N-terminal domain facilitates the flipping of Lys-PG. Thus, MprF represents a new class of lipid-biosynthetic enzymes with two separable functional domains that synthesize Lys-PG and facilitate Lys-PG translocation. Our study unravels crucial details on the molecular basis of an important bacterial immune evasion mechanism and it may help to employ MprF as a target for new anti-virulence drugs.
许多细菌病原体通过多重肽抗性因子(MprF)蛋白获得对抗防御素样阳离子抗菌肽(CAMPs)的抗性。MprF 在金黄色葡萄球菌毒力中发挥着关键作用,并且它参与了对 CAMP 样抗生素达托霉素的抗性。MprF 是一种大型膜蛋白,它用 l-赖氨酸修饰阴离子磷脂磷脂酰甘油,从而降低细菌对 CAMPs 的亲和力。由于 MprF 的广泛存在,建议将其作为新型抗菌药物的靶标,尽管 MprF 的作用模式仍不完全清楚。我们证明,MprF 的亲水 C 端结构域和 14 个推测的跨膜结构域中的 6 个足以进行全水平赖氨酸磷酸磷脂酰甘油(Lys-PG)的产生,并且 MprF 中的几个保守氨基酸位置对于 Lys-PG 的产生是必不可少的。值得注意的是,当 MprF 的大疏水 N 端结构域缺失时,Lys-PG 的产生并没有导致有效的 CAMP 抗性,并且大部分 Lys-PG 仍保留在细胞质膜的内叶,表明该蛋白部分具有关键作用。单独的 N 端结构域本身不能赋予 CAMP 抗性或排斥阳离子测试蛋白细胞色素 c。然而,当 N 端结构域与 Lys-PG 合酶结构域在一个蛋白中或作为两个单独的蛋白共同表达时,可实现全水平的 CAMP 抗性。此外,只有两个结构域的共表达才能有效地将 Lys-PG 易位到膜的外叶,并实现全水平的细胞色素 c 排斥,表明 N 端结构域有助于 Lys-PG 的翻转。因此,MprF 代表了一类具有两个可分离功能结构域的新型脂质生物合成酶,这些酶合成 Lys-PG 并促进 Lys-PG 的易位。我们的研究揭示了一种重要细菌免疫逃避机制的分子基础的关键细节,并且可能有助于将 MprF 作为新型抗毒力药物的靶标。