Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St., Cambridge, Massachusetts 02138, USA.
J Chem Phys. 2009 Nov 14;131(18):184102. doi: 10.1063/1.3259838.
We utilize the novel non-Markovian quantum jump (NMQJ) approach to stochastically simulate exciton dynamics derived from a time-convolutionless master equation. For relevant parameters and time scales, the time-dependent, oscillatory decoherence rates can have negative regions, a signature of non-Markovian behavior and of the revival of coherences. This can lead to non-Markovian population beatings for a dimer system at room temperature. We show that strong exciton-phonon coupling to low frequency modes can considerably modify transport properties. We observe increased exciton transport, which can be seen as an extension of recent environment-assisted quantum transport concepts to the non-Markovian regime. Within the NMQJ method, the Fenna-Matthew-Olson protein is investigated as a prototype for larger photosynthetic complexes.
我们利用新颖的非马尔可夫量子跳跃(NMQJ)方法来随机模拟源于无时间卷积主方程的激子动力学。对于相关参数和时间尺度,时变、振荡退相干率可能具有负区域,这是非马尔可夫行为和相干恢复的特征。这可能导致室温下二聚体系统的非马尔可夫群体拍频。我们表明,与低频模式的强激子-声子耦合可以极大地改变输运性质。我们观察到激子输运的增加,这可以看作是最近环境辅助量子输运概念向非马尔可夫区域的扩展。在 NMQJ 方法中,Fenna-Matthew-Olson 蛋白被用作更大的光合作用复合物的原型进行研究。