Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada 89557, USA.
Gastroenterology. 2010 Mar;138(3):1068-78.e1-2. doi: 10.1053/j.gastro.2009.11.007. Epub 2009 Nov 13.
BACKGROUND & AIMS: Interstitial cells of Cajal (ICC) express the receptor tyrosine kinase, KIT, the receptor for stem cell factor. In the gastrointestinal (GI) tract, ICC are pacemaker cells that generate spontaneous electrical slow waves, and mediate inputs from motor neurons. Absence or loss of ICC are associated with GI motility disorders, including those consequent of diabetes. Studies of ICC have been hampered by the low density of these cells and difficulties in recognizing these cells in cell dispersions.
Kit(+/copGFP) mice harboring a copepod super green fluorescent protein (copGFP) complementary DNA, inserted at the Kit locus, were generated. copGFP(+) ICC from GI muscles were analyzed using confocal microscopy and flow cytometry. copGFP(+) ICC from the jejunum were purified by a fluorescence-activated cell sorter and validated by cell-specific markers. Kit(+/copGFP) mice were crossbred with diabetic Lep(+/ob) mice to generate compound Kit(+/copGFP);Lep(ob/ob) mutant mice. copGFP(+) ICC from compound transgenic mice were analyzed by confocal microscopy.
copGFP in Kit(+/copGFP) mice colocalized with KIT immunofluorescence and thus was predominantly found in ICC. In other smooth muscles, mast cells were also labeled, but these cells were relatively rare in the murine GI tract. copGFP(+) cells from jejunal muscles were Kit(+) and free of contaminating cell-specific markers. Kit(+/copGFP);Lep(ob/ob) mice displayed ICC networks that were dramatically disrupted during the development of diabetes.
Kit(+/copGFP) mice offer a powerful new model to study the function and genetic regulation of ICC phenotypes. Isolation of ICC from animal models will help determine the causes and responses of ICC to therapeutic agents.
Cajal 间质细胞(ICC)表达受体酪氨酸激酶 KIT,是干细胞因子的受体。在胃肠道(GI)中,ICC 是起搏细胞,可产生自发性电慢波,并介导运动神经元的输入。ICC 的缺失或丢失与 GI 运动障碍有关,包括糖尿病引起的那些。由于 ICC 密度低以及在细胞分散液中识别这些细胞存在困难,因此对 ICC 的研究受到了阻碍。
生成了携带共生绿荧光蛋白(copGFP)互补 DNA 的 Kit(+/copGFP) 小鼠,该 cDNA 插入 Kit 基因座。使用共聚焦显微镜和流式细胞术分析来自 GI 肌肉的 copGFP(+)ICC。通过荧光激活细胞分选纯化来自空肠的 copGFP(+)ICC,并通过细胞特异性标志物进行验证。将 Kit(+/copGFP) 小鼠与糖尿病 Lep(+/ob) 小鼠杂交,生成复合 Kit(+/copGFP);Lep(ob/ob) 突变小鼠。通过共聚焦显微镜分析复合转基因小鼠的 copGFP(+)ICC。
Kit(+/copGFP) 小鼠中的 copGFP 与 KIT 免疫荧光共定位,因此主要存在于 ICC 中。在其他平滑肌中,肥大细胞也被标记,但这些细胞在鼠类 GI 中相对较少。来自空肠肌肉的 copGFP(+)细胞是 Kit(+),且没有污染的细胞特异性标志物。Kit(+/copGFP);Lep(ob/ob) 小鼠在糖尿病发生发展过程中显示 ICC 网络严重破坏。
Kit(+/copGFP) 小鼠为研究 ICC 表型的功能和遗传调控提供了一种强大的新模型。从动物模型中分离 ICC 将有助于确定 ICC 对治疗剂的原因和反应。