Suppr超能文献

他莫昔芬-聚乙二醇-巯基金纳米粒子缀合物:增强的效力和选择性递送用于乳腺癌治疗。

Tamoxifen-poly(ethylene glycol)-thiol gold nanoparticle conjugates: enhanced potency and selective delivery for breast cancer treatment.

机构信息

Department of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, Georgia 30332-0400, USA.

出版信息

Bioconjug Chem. 2009 Dec;20(12):2247-53. doi: 10.1021/bc9002212.

Abstract

The breast cancer treatment drug tamoxifen has been widely administered for more than three decades. This small molecule competes with 17beta-estradiol for binding to estrogen receptor, a hormone receptor upregulated in a majority of breast cancers, subsequently initiating programmed cell death. We have synthesized a thiol-PEGylated tamoxifen derivative that can be used to selectively target and deliver plasmonic gold nanoparticles to estrogen receptor positive breast cancer cells with up to 2.7-fold enhanced drug potency in vitro. Optical microscopy/spectroscopy, time-dependent dose-response data, and estrogen competition studies indicate that augmented activity is due to increased rates of intracellular tamoxifen transport by nanoparticle endocytosis, rather than by passive diffusion of the free drug. Both ligand- and receptor-dependent intracellular delivery of gold nanoparticles suggest that plasma membrane localized estrogen receptor alpha may facilitate selective uptake and retention of this and other therapeutic nanoparticle conjugates. Combined targeting selectivity and enhanced potency provides opportunities for both multimodal endocrine treatment strategies and adjunctive laser photothermal therapy.

摘要

乳腺癌治疗药物他莫昔芬已经广泛应用了三十多年。这种小分子与 17β-雌二醇竞争与雌激素受体结合,雌激素受体在大多数乳腺癌中上调,随后引发程序性细胞死亡。我们合成了一种巯基-聚乙二醇化的他莫昔芬衍生物,可用于选择性靶向和递送至雌激素受体阳性乳腺癌细胞的等离子体金纳米颗粒,在体外具有高达 2.7 倍的增强药物效力。光学显微镜/光谱学、时间依赖性剂量反应数据和雌激素竞争研究表明,增强的活性是由于纳米颗粒内吞作用导致细胞内他莫昔芬转运速率增加,而不是游离药物的被动扩散。配体和受体依赖性的金纳米颗粒的细胞内递释表明,位于质膜上的雌激素受体α可能有助于这种和其他治疗性纳米颗粒缀合物的选择性摄取和保留。联合靶向选择性和增强效力为多模式内分泌治疗策略和辅助激光光热治疗提供了机会。

相似文献

3
Insights on the transport of tamoxifen by gold nanoparticles for MCF-7 breast cancer cells based on SERS spectroscopy.
Colloids Surf B Biointerfaces. 2018 Oct 1;170:712-717. doi: 10.1016/j.colsurfb.2018.07.001. Epub 2018 Jul 4.
8
Unique SERM-like properties of the novel fluorescent tamoxifen derivative FLTX1.
Eur J Pharm Biopharm. 2013 Nov;85(3 Pt B):898-910. doi: 10.1016/j.ejpb.2013.04.024. Epub 2013 May 31.

引用本文的文献

1
MicroRNA-targeted nanoparticle delivery systems for cancer therapy: current status and future prospects.
Nanomedicine (Lond). 2025 May;20(10):1181-1194. doi: 10.1080/17435889.2025.2492542. Epub 2025 Apr 15.
2
Biogenic nanoparticles: pioneering a new era in breast cancer therapeutics-a comprehensive review.
Discov Nano. 2024 Aug 3;19(1):121. doi: 10.1186/s11671-024-04072-y.
3
Metal-based nanoparticle in cancer treatment: lessons learned and challenges.
Front Bioeng Biotechnol. 2024 Jul 11;12:1436297. doi: 10.3389/fbioe.2024.1436297. eCollection 2024.
4
Potential of covalently linked tamoxifen hybrids for cancer treatment: recent update.
RSC Med Chem. 2024 Apr 17;15(6):1877-1898. doi: 10.1039/d3md00632h. eCollection 2024 Jun 19.
5
Tackling breast cancer with gold nanoparticles: twinning synthesis and particle engineering with efficacy.
Nanoscale Adv. 2024 Apr 17;6(11):2766-2812. doi: 10.1039/d3na00988b. eCollection 2024 May 29.
6
Advances in Receptor-Mediated, Tumor-Targeted Drug Delivery.
Adv Ther (Weinh). 2019 Jan;2(1). doi: 10.1002/adtp.201800091. Epub 2018 Sep 10.
7
Tumor microenvironment reprogramming by nanomedicine to enhance the effect of tumor immunotherapy.
Asian J Pharm Sci. 2024 Apr;19(2):100902. doi: 10.1016/j.ajps.2024.100902. Epub 2024 Mar 11.
8
Doxorubicin-Based Ionic Nanomedicines for Combined Chemo-Phototherapy of Cancer.
ACS Appl Nano Mater. 2024 Jan 26;7(2):2176-2189. doi: 10.1021/acsanm.3c05464. Epub 2024 Jan 17.
9
Recent nanotheranostic approaches in cancer research.
Clin Exp Med. 2024 Jan 19;24(1):8. doi: 10.1007/s10238-023-01262-3.
10
Phytoestrogen-derived multifunctional ligands for targeted therapy of breast cancer.
Asian J Pharm Sci. 2023 Jul;18(4):100827. doi: 10.1016/j.ajps.2023.100827. Epub 2023 Jul 7.

本文引用的文献

1
The controlled intravenous delivery of drugs using PEG-coated sterically stabilized nanospheres.
Adv Drug Deliv Rev. 1995 Sep;16(2-3):215-233. doi: 10.1016/0169-409X(95)00026-4.
2
Computationally guided photothermal tumor therapy using long-circulating gold nanorod antennas.
Cancer Res. 2009 May 1;69(9):3892-900. doi: 10.1158/0008-5472.CAN-08-4242. Epub 2009 Apr 14.
3
Uptake and intracellular fate of surface-modified gold nanoparticles.
ACS Nano. 2008 Aug;2(8):1639-44. doi: 10.1021/nn800330a.
4
Gold Nanorods Mediate Tumor Cell Death by Compromising Membrane Integrity.
Adv Mater. 2007;19:3136-3141. doi: 10.1002/adma.200701974.
5
Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice.
Cancer Lett. 2008 Sep 28;269(1):57-66. doi: 10.1016/j.canlet.2008.04.026. Epub 2008 Jun 9.
6
Therapeutic nanoparticles for drug delivery in cancer.
Clin Cancer Res. 2008 Mar 1;14(5):1310-6. doi: 10.1158/1078-0432.CCR-07-1441.
7
In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags.
Nat Biotechnol. 2008 Jan;26(1):83-90. doi: 10.1038/nbt1377. Epub 2007 Dec 23.
8
Gold nanoparticles decorated with oligo(ethylene glycol) thiols: protein resistance and colloidal stability.
J Phys Chem A. 2007 Dec 13;111(49):12229-37. doi: 10.1021/jp074293v. Epub 2007 Oct 3.
9
New insights into the metabolism of tamoxifen and its role in the treatment and prevention of breast cancer.
Steroids. 2007 Nov;72(13):829-42. doi: 10.1016/j.steroids.2007.07.009. Epub 2007 Jul 27.
10
Paclitaxel-functionalized gold nanoparticles.
J Am Chem Soc. 2007 Sep 19;129(37):11653-61. doi: 10.1021/ja075181k. Epub 2007 Aug 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验