Divakaran Vijay, Adrogue Julia, Ishiyama Masakuni, Entman Mark L, Haudek Sandra, Sivasubramanian Natarajan, Mann Douglas L
Sections of Cardiology and Cardiovascular Sciences, and Departments of Medicine and Molecular Physiology and Biophysics, Winters Center for Heart Failure Research, Baylor College of Medicine, Houston, Tex, USA.
Circ Heart Fail. 2009 Nov;2(6):633-42. doi: 10.1161/CIRCHEARTFAILURE.108.823070. Epub 2009 Sep 24.
Previous studies suggest that transforming growth factor-beta provokes cardiac hypertrophy and myocardial fibrosis; however, it is unclear whether the deleterious effects of transforming growth factor-beta signaling are conveyed through SMAD-dependent or SMAD-independent signaling pathways.
To determine the contribution of SMAD-dependent signaling to cardiac remodeling, we performed transaortic constriction in SMAD3 null (SMAD3(-/-)) and littermate control mice (age, 10 to 12 weeks). Cumulative survival 20 days after transaortic constriction was significantly less in the SMAD3(-/-) mice when compared with littermate controls (43.6% versus 90.9%, P<0.01). Transaortic constriction resulted in a significant increase in cardiac hypertrophy in the SMAD3(-/-) mice, denoted by an increase in the heart weight to tibial length ratio and increased myocyte cross-sectional area. Loss of SMAD3 signaling also resulted in a significant 60% decrease in myocardial fibrosis (P<0.05). A microRNA microarray showed that 55 microRNAs were differentially expressed in littermate and SMAD3(-/-) mice and that 10 of these microRNAs were predicted to bind to genes that regulate the extracellular matrix. Of these 10 candidate microRNAs, both miR-25 and miR-29a were sufficient to decrease collagen gene expression when transfected into isolated cardiac fibroblasts in vitro.
The results suggest that SMAD3 signaling plays dual roles in the heart: one beneficial role by delimiting hypertrophic growth and the other deleterious by modulating myocardial fibrosis, possibly through a pathway that entails accumulation of microRNAs that decrease collagen gene expression.
先前的研究表明,转化生长因子-β可引发心脏肥大和心肌纤维化;然而,尚不清楚转化生长因子-β信号传导的有害作用是通过SMAD依赖还是非SMAD依赖的信号通路传递的。
为了确定SMAD依赖信号传导对心脏重塑的作用,我们在SMAD3基因敲除(SMAD3(-/-))小鼠和同窝对照小鼠(年龄10至12周)中进行了经主动脉缩窄术。与同窝对照相比,经主动脉缩窄术后20天,SMAD3(-/-)小鼠的累积存活率显著降低(43.6%对90.9%,P<0.01)。经主动脉缩窄导致SMAD3(-/-)小鼠心脏肥大显著增加,表现为心脏重量与胫骨长度比值增加以及心肌细胞横截面积增大。SMAD3信号缺失还导致心肌纤维化显著降低60%(P<0.05)。一项微小RNA微阵列显示,55种微小RNA在同窝对照小鼠和SMAD3(-/-)小鼠中差异表达,其中10种微小RNA被预测可与调节细胞外基质的基因结合。在这10种候选微小RNA中,miR-25和miR-29a在体外转染到分离的心脏成纤维细胞时均足以降低胶原蛋白基因表达。
结果表明,SMAD3信号在心脏中发挥双重作用:一方面通过限制肥大生长发挥有益作用,另一方面可能通过一条涉及积累降低胶原蛋白基因表达的微小RNA的途径调节心肌纤维化,从而发挥有害作用。