Tuleta Izabela, Hanna Anis, Humeres Claudio, Aguilan Jennifer T, Sidoli Simone, Zhu Fenglan, Frangogiannis Nikolaos G
Department of Medicine (Cardiology), Albert Einstein College of Medicine, The Wilf Family Cardiovascular Research Institute, 1300 Morris Park Avenue Forchheimer G46B, Bronx, NY 10461, USA.
Department of Microbiology and Immunology, Albert Einstein College of Medicine, The Wilf Family Cardiovascular Research Institute, 1300 Morris Park Avenue Forchheimer G46B, Bronx, NY 10461, USA.
Cardiovasc Res. 2024 Dec 14;120(16):2047-2063. doi: 10.1093/cvr/cvae210.
Transforming growth factor (TGF)-β is up-regulated in the diabetic myocardium and may mediate fibroblast activation. We aimed at examining the role of TGF-β-induced fibroblast activation in the pathogenesis of diabetic cardiomyopathy.
We generated lean and obese db/db mice with fibroblast-specific loss of TbR2, the Type 2 receptor-mediating signaling through all three TGF-β isoforms, and mice with fibroblast-specific Smad3 disruption. Systolic and diastolic function, myocardial fibrosis, and hypertrophy were assessed. Transcriptomic studies and in vitro experiments were used to dissect mechanisms of fibroblast activation. Fibroblast-specific TbR2 loss attenuated systolic and diastolic dysfunction in db/db mice. The protective effects of fibroblast TbR2 loss in db/db mice were associated with attenuated fibrosis and reduced cardiomyocyte hypertrophy, suggesting that in addition to their role in fibrous tissue deposition, TGF-β-stimulated fibroblasts may also exert paracrine actions on cardiomyocytes. Fibroblast-specific Smad3 loss phenocopied the protective effects of fibroblast TbR2 loss in db/db mice. Db/db fibroblasts had increased expression of genes associated with oxidative response (such as Fmo2, encoding flavin-containing monooxygenase 2), matricellular genes (such as Thbs4 and Fbln2), and Lox (encoding lysyl oxidase). Ingenuity pathway analysis (IPA) predicted that neurohumoral mediators, cytokines, and growth factors (such as AGT, TGFB1, and TNF) may serve as important upstream regulators of the transcriptomic profile of diabetic mouse fibroblasts. IPA of scRNA-seq data identified TGFB1, p53, MYC, PDGF-BB, EGFR, and WNT3A/CTNNB1 as important upstream regulators underlying fibroblast activation in db/db hearts. Comparison of the transcriptome of fibroblasts from db/db mice with fibroblast-specific Smad3 loss and db/db Smad3 fl/fl controls identified Thbs4 [encoding thrombospondin-4 (TSP-4), a marker of activated fibroblasts] as a candidate diabetes-induced fibrogenic mediator. However, in vitro experiments showed no significant activating effects of matricellular or intracellular TSP-4 on cardiac fibroblasts.
Fibroblast-specific TGF-β/Smad3 signaling mediates ventricular fibrosis, hypertrophy, and dysfunction in Type 2 diabetes.
转化生长因子(TGF)-β在糖尿病心肌中上调,可能介导成纤维细胞活化。我们旨在研究TGF-β诱导的成纤维细胞活化在糖尿病性心肌病发病机制中的作用。
我们构建了成纤维细胞特异性缺失TbR2(通过所有三种TGF-β亚型介导信号传导的2型受体)的瘦型和肥胖型db/db小鼠,以及成纤维细胞特异性Smad3缺失的小鼠。评估收缩和舒张功能、心肌纤维化和肥大情况。采用转录组学研究和体外实验来剖析成纤维细胞活化的机制。成纤维细胞特异性TbR2缺失减轻了db/db小鼠的收缩和舒张功能障碍。成纤维细胞TbR2缺失对db/db小鼠的保护作用与纤维化减轻和心肌细胞肥大减少有关,这表明除了在纤维组织沉积中的作用外,TGF-β刺激的成纤维细胞可能还对心肌细胞发挥旁分泌作用。成纤维细胞特异性Smad3缺失模拟了成纤维细胞TbR2缺失对db/db小鼠的保护作用。db/db成纤维细胞中与氧化反应相关的基因(如编码含黄素单加氧酶2的Fmo2)、基质细胞基因(如Thbs4和Fbln2)以及Lox(编码赖氨酰氧化酶)的表达增加。 Ingenuity通路分析(IPA)预测神经体液介质、细胞因子和生长因子(如AGT、TGFB1和TNF)可能是糖尿病小鼠成纤维细胞转录组谱的重要上游调节因子。scRNA-seq数据的IPA确定TGFB1、p53、MYC、PDGF-BB、EGFR和WNT3A/CTNNB1是db/db心脏中成纤维细胞活化的重要上游调节因子。比较成纤维细胞特异性Smad3缺失的db/db小鼠和成纤维细胞Smad3 fl/fl对照小鼠的成纤维细胞转录组,确定Thbs4 [编码血小板反应蛋白-4(TSP-4),一种活化成纤维细胞的标志物]为糖尿病诱导的促纤维化介质候选物。然而,体外实验表明基质细胞或细胞内TSP-4对心脏成纤维细胞没有显著的活化作用。
成纤维细胞特异性TGF-β/Smad3信号传导介导2型糖尿病中的心室纤维化、肥大和功能障碍。