Suppr超能文献

BLUP 在生态学和进化中的误用。

The misuse of BLUP in ecology and evolution.

机构信息

Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom.

出版信息

Am Nat. 2010 Jan;175(1):116-25. doi: 10.1086/648604.

Abstract

Best linear unbiased prediction (BLUP) is a method for obtaining point estimates of a random effect in a mixed effect model. Over the past decade it has been used extensively in ecology and evolutionary biology to predict individual breeding values and reaction norms. These predictions have been used to infer natural selection, evolutionary change, spatial-genetic patterns, individual reaction norms, and frailties. In this article we show analytically and through simulation and example why BLUP often gives anticonservative and biased estimates of evolutionary and ecological parameters. Although some concerns with BLUP methodology have been voiced before, the scale and breadth of the problems have probably not been widely appreciated. Bias arises because BLUPs are often used to estimate effects that are not explicitly accounted for in the model used to make the predictions. In these cases, predicted breeding values will often say more about phenotypic patterns than the genetic patterns of interest. An additional problem is that BLUPs are point estimates of quantities that are usually known with little certainty. Failure to account for this uncertainty in subsequent tests can lead to both bias and extreme anticonservatism. We demonstrate that restricted maximum likelihood and Bayesian solutions exist for these problems and show how unbiased and powerful tests can be derived that adequately quantify uncertainty. Of particular utility is a new test for detecting evolutionary change that not only accounts for prediction error in breeding values but also accounts for drift. To illustrate the problem, we apply these tests to long-term data on the Soay sheep (Ovis aries) and the great tit (Parus major) and show that previously reported temporal trends in breeding values are not supported.

摘要

最佳线性无偏预测(BLUP)是一种在混合效应模型中获取随机效应点估计的方法。在过去的十年中,它已被广泛用于生态学和进化生物学中,以预测个体的繁殖值和反应规范。这些预测被用于推断自然选择、进化变化、空间遗传模式、个体反应规范和脆弱性。在本文中,我们通过分析、模拟和实例展示了为什么 BLUP 经常给出进化和生态参数的保守和有偏估计。尽管之前已经有人对 BLUP 方法提出了一些担忧,但问题的规模和广度可能还没有得到广泛的认识。偏差的产生是因为 BLUP 通常用于估计模型中没有明确考虑到的效应。在这些情况下,预测的繁殖值往往更多地反映了表型模式,而不是感兴趣的遗传模式。另一个问题是,BLUP 是通常不太确定的数量的点估计。在后续测试中未能考虑到这种不确定性会导致偏差和极端保守。我们证明了这些问题存在受限最大似然和贝叶斯解决方案,并展示了如何得出无偏和强大的测试,以充分量化不确定性。特别有用的是一种新的检测进化变化的测试方法,该方法不仅考虑了繁殖值的预测误差,还考虑了漂移。为了说明这个问题,我们将这些测试应用于关于斯氏绵羊(Ovis aries)和大山雀(Parus major)的长期数据,并表明先前报道的繁殖值的时间趋势是没有得到支持的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验