Suppr超能文献

大肠杆菌 O157 中一种将 GlcNAc-P-P-十一碳烯醇转化为 GalNAc-P-P-十一碳烯醇的新型差向异构酶。

A novel epimerase that converts GlcNAc-P-P-undecaprenol to GalNAc-P-P-undecaprenol in Escherichia coli O157.

机构信息

Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, Kentucky 40536, USA.

出版信息

J Biol Chem. 2010 Jan 15;285(3):1671-80. doi: 10.1074/jbc.M109.061630. Epub 2009 Nov 18.

Abstract

Escherichia coli strain O157 produces an O-antigen with the repeating tetrasaccharide unit alpha-D-PerNAc-alpha-l-Fuc-beta-D-Glc-alpha-D-GalNAc, preassembled on undecaprenyl pyrophosphate (Und-P-P). These studies were conducted to determine whether the biosynthesis of the lipid-linked repeating tetrasaccharide was initiated by the formation of GalNAc-P-P-Und by WecA. When membrane fractions from E. coli strains K12, O157, and PR4019, a WecA-overexpressing strain, were incubated with UDP-[3H]GalNAc, neither the enzymatic synthesis of [3H]GlcNAc-P-P-Und nor [3H]GalNAc-P-P-Und was detected. However, when membrane fractions from strain O157 were incubated with UDP-[3H]GlcNAc, two enzymatically labeled products were observed with the chemical and chromatographic properties of [3H]GlcNAc-P-P-Und and [3H]GalNAc-P-P-Und, suggesting that strain O157 contained an epimerase capable of interconverting GlcNAc-P-P-Und and GalNAc-P-P-Und. The presence of a novel epimerase was demonstrated by showing that exogenous [3H]GlcNAc-P-P-Und was converted to [3H]GalNAc-P-P-Und when incubated with membranes from strain O157. When strain O157 was metabolically labeled with [3H]GlcNAc, both [3H]GlcNAc-P-P-Und and [3H]GalNAc-P-P-Und were detected. Transformation of E. coli strain 21546 with the Z3206 gene enabled these cells to synthesize GalNAc-P-P-Und in vivo and in vitro. The reversibility of the epimerase reaction was demonstrated by showing that [3H]GlcNAc-P-P-Und was reformed when membranes from strain O157 were incubated with exogenous [3H]GalNAc-P-P-Und. The inability of Z3206 to complement the loss of the gne gene in the expression of the Campylobacter jejuni N-glycosylation system in E. coli indicated that it does not function as a UDP-GlcNAc/UDP-GalNAc epimerase. Based on these results, GalNAc-P-P-Und is synthesized reversibly by a novel GlcNAc-P-P-Und epimerase after the formation of GlcNAc-P-P-Und by WecA in E. coli O157.

摘要

大肠杆菌 O157 株产生具有重复四糖单元α-D-PerNAc-α-l-Fuc-β-D-Glc-α-D-GalNAc 的 O-抗原,该四糖单元预先组装在十一碳烯焦磷酸上(Und-P-P)。这些研究旨在确定 WecA 是否通过形成 GalNAc-P-P-Und 来启动脂质连接的重复四糖的生物合成。当用 UDP-[3H]GalNAc 孵育大肠杆菌 K12、O157 和 PR4019 菌株(一种 WecA 过表达菌株)的膜部分时,既没有检测到[3H]GlcNAc-P-P-Und 的酶促合成,也没有检测到[3H]GalNAc-P-P-Und。然而,当用 UDP-[3H]GlcNAc 孵育 O157 菌株的膜部分时,观察到两种具有化学和色谱性质的酶标记产物[3H]GlcNAc-P-P-Und 和[3H]GalNAc-P-P-Und,表明 O157 菌株含有一种能够使 GlcNAc-P-P-Und 和 GalNAc-P-P-Und 相互转化的差向异构酶。通过显示当用 O157 菌株的膜孵育时,外源[3H]GlcNAc-P-P-Und 被转化为[3H]GalNAc-P-P-Und,证明了新型差向异构酶的存在。当用[3H]GlcNAc 对 O157 菌株进行代谢标记时,既检测到[3H]GlcNAc-P-P-Und,也检测到[3H]GalNAc-P-P-Und。用 Z3206 基因转化大肠杆菌 21546 使这些细胞能够在体内和体外合成 GalNAc-P-P-Und。当用 O157 菌株的膜孵育外源[3H]GalNAc-P-P-Und 时,[3H]GlcNAc-P-P-Und 重新形成,证明了差向异构酶反应的可逆性。Z3206 不能补充 WecA 在大肠杆菌中表达空肠弯曲菌 N-糖基化系统时 gne 基因的缺失,表明它不能作为 UDP-GlcNAc/UDP-GalNAc 差向异构酶发挥作用。基于这些结果,在大肠杆菌 O157 中由 WecA 形成 GlcNAc-P-P-Und 后,通过一种新型的 GlcNAc-P-P-Und 差向异构酶可可逆地合成 GalNAc-P-P-Und。

相似文献

1
A novel epimerase that converts GlcNAc-P-P-undecaprenol to GalNAc-P-P-undecaprenol in Escherichia coli O157.
J Biol Chem. 2010 Jan 15;285(3):1671-80. doi: 10.1074/jbc.M109.061630. Epub 2009 Nov 18.
3
Chemoenzymatic synthesis of the bacterial polysaccharide repeating unit undecaprenyl pyrophosphate and its analogs.
Nat Protoc. 2016 Jul;11(7):1280-98. doi: 10.1038/nprot.2016.067. Epub 2016 Jun 23.
5
Biochemical characterization of UDP-GlcNAc/Glc 4-epimerase from Escherichia coli O86:B7.
Biochemistry. 2006 Nov 21;45(46):13760-8. doi: 10.1021/bi0612770.
7
High level in vivo mucin-type glycosylation in Escherichia coli.
Microb Cell Fact. 2018 Oct 26;17(1):168. doi: 10.1186/s12934-018-1013-9.
9
10
The O-antigen gene cluster of Escherichia coli O55:H7 and identification of a new UDP-GlcNAc C4 epimerase gene.
J Bacteriol. 2002 May;184(10):2620-5. doi: 10.1128/JB.184.10.2620-2625.2002.

引用本文的文献

1
2
Structure of WzxE the lipid III flippase for Enterobacterial Common Antigen polysaccharide.
Open Biol. 2025 Jan;15(1):240310. doi: 10.1098/rsob.240310. Epub 2025 Jan 8.
5
Lipopolysaccharide O-antigens-bacterial glycans made to measure.
J Biol Chem. 2020 Jul 31;295(31):10593-10609. doi: 10.1074/jbc.REV120.009402. Epub 2020 May 18.
6
Structure and genetics of Escherichia coli O antigens.
FEMS Microbiol Rev. 2020 Nov 24;44(6):655-683. doi: 10.1093/femsre/fuz028.
7
Identification and characterization of the 4-epimerase AglW from the archaeon Methanococcus maripaludis.
Glycoconj J. 2018 Dec;35(6):525-535. doi: 10.1007/s10719-018-9845-4. Epub 2018 Oct 6.
8
Lipopolysaccharide structure impacts the entry kinetics of bacterial outer membrane vesicles into host cells.
PLoS Pathog. 2017 Nov 29;13(11):e1006760. doi: 10.1371/journal.ppat.1006760. eCollection 2017 Nov.
9
Synthesis of N-acetyl-d-quinovosamine in Rhizobium etli CE3 is completed after its 4-keto-precursor is linked to a carrier lipid.
Microbiology (Reading). 2017 Dec;163(12):1890-1901. doi: 10.1099/mic.0.000576. Epub 2017 Nov 22.

本文引用的文献

1
Structure and genetics of Shigella O antigens.
FEMS Microbiol Rev. 2008 Jul;32(4):627-53. doi: 10.1111/j.1574-6976.2008.00114.x. Epub 2008 Apr 16.
2
Reagent for Differentiation of 1,4- and 1,6-Linked Glucosaccharides.
Science. 1956 Mar 30;123(3196):543-4. doi: 10.1126/science.123.3196.543.
3
Three UDP-hexose 4-epimerases with overlapping substrate specificity coexist in E. coli O86:B7.
Biochem Biophys Res Commun. 2007 May 11;356(3):604-9. doi: 10.1016/j.bbrc.2007.03.015. Epub 2007 Mar 12.
4
Biosynthesis and assembly of capsular polysaccharides in Escherichia coli.
Annu Rev Biochem. 2006;75:39-68. doi: 10.1146/annurev.biochem.75.103004.142545.
5
The structures of Escherichia coli O-polysaccharide antigens.
FEMS Microbiol Rev. 2006 May;30(3):382-403. doi: 10.1111/j.1574-6976.2006.00016.x.
6
A comparison of enteropathogenic and enterohaemorrhagic Escherichia coli pathogenesis.
FEMS Microbiol Lett. 2006 Feb;255(2):187-202. doi: 10.1111/j.1574-6968.2006.00119.x.
9
Functional analysis of the Campylobacter jejuni N-linked protein glycosylation pathway.
Mol Microbiol. 2005 Mar;55(6):1695-703. doi: 10.1111/j.1365-2958.2005.04519.x.
10
Engineering N-linked protein glycosylation with diverse O antigen lipopolysaccharide structures in Escherichia coli.
Proc Natl Acad Sci U S A. 2005 Feb 22;102(8):3016-21. doi: 10.1073/pnas.0500044102. Epub 2005 Feb 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验