HKU-Pasteur Research Center, The University of Hong Kong, Hong Kong SAR, China.
PLoS One. 2009 Nov 17;4(11):e7870. doi: 10.1371/journal.pone.0007870.
Entry of enveloped viruses into host cells requires the activation of viral envelope glycoproteins through cleavage by either intracellular or extracellular proteases. In order to gain insight into the molecular basis of protease cleavage and its impact on the efficiency of viral entry, we investigated the susceptibility of a recombinant native full-length S-protein trimer (triSpike) of the severe acute respiratory syndrome coronavirus (SARS-CoV) to cleavage by various airway proteases.
METHODOLOGY/PRINCIPAL FINDINGS: PURIFIED TRISPIKE PROTEINS WERE READILY CLEAVED IN VITRO BY THREE DIFFERENT AIRWAY PROTEASES: trypsin, plasmin and TMPRSS11a. High Performance Liquid Chromatography (HPLC) and amino acid sequencing analyses identified two arginine residues (R667 and R797) as potential protease cleavage site(s). The effect of protease-dependent enhancement of SARS-CoV infection was demonstrated with ACE2 expressing human bronchial epithelial cells 16HBE. Airway proteases regulate the infectivity of SARS-CoV in a fashion dependent on previous receptor binding. The role of arginine residues was further shown with mutant constructs (R667A, R797A or R797AR667A). Mutation of R667 or R797 did not affect the expression of S-protein but resulted in a differential efficacy of pseudotyping into SARS-CoVpp. The R667A SARS-CoVpp mutant exhibited a lack of virus entry enhancement following protease treatment.
CONCLUSIONS/SIGNIFICANCE: These results suggest that SARS S-protein is susceptible to airway protease cleavage and, furthermore, that protease mediated enhancement of virus entry depends on specific conformation of SARS S-protein upon ACE2 binding. These data have direct implications for the cell entry mechanism of SARS-CoV along the respiratory system and, furthermore expand the possibility of identifying potential therapeutic agents against SARS-CoV.
包膜病毒进入宿主细胞需要病毒包膜糖蛋白通过细胞内或细胞外蛋白酶的切割而激活。为了深入了解蛋白酶切割的分子基础及其对病毒进入效率的影响,我们研究了严重急性呼吸综合征冠状病毒(SARS-CoV)重组天然全长 S 蛋白三聚体(三聚体 Spike)对各种气道蛋白酶切割的敏感性。
方法/主要发现:纯化的三聚体 Spike 蛋白在体外很容易被三种不同的气道蛋白酶切割:胰蛋白酶、纤溶酶和 TMPRSS11a。高效液相色谱(HPLC)和氨基酸测序分析鉴定出两个精氨酸残基(R667 和 R797)为潜在的蛋白酶切割位点。用表达 ACE2 的人支气管上皮细胞 16HBE 证实了蛋白酶依赖性增强 SARS-CoV 感染的效应。气道蛋白酶以依赖于受体结合的方式调节 SARS-CoV 的感染性。用突变构建体(R667A、R797A 或 R797AR667A)进一步证明了精氨酸残基的作用。R667 或 R797 的突变不影响 S 蛋白的表达,但导致假型化为 SARS-CoVpp 的效力不同。R667A SARS-CoVpp 突变体在蛋白酶处理后缺乏病毒进入增强。
结论/意义:这些结果表明,SARS S 蛋白易受气道蛋白酶切割,此外,蛋白酶介导的病毒进入增强取决于 SARS S 蛋白与 ACE2 结合后的特定构象。这些数据直接影响 SARS-CoV 在呼吸系统中的细胞进入机制,并进一步扩大了鉴定针对 SARS-CoV 的潜在治疗剂的可能性。