EME/XaRMAE/IN2UB, Departament d'Electrònica, Universitat de Barcelona, C/ Martí i Franquès 1, Planta 2, E-08028 Barcelona, Spain.
Phys Chem Chem Phys. 2009 Dec 14;11(46):10881-9. doi: 10.1039/b915646a. Epub 2009 Oct 14.
The paper presents a quantitative model to elucidate the role of impinging photons on the final response towards oxidizing gases of light-activated metal oxide gas sensors. The model is based on the competition between oxygen molecules in air and oxidizing target gases (such as NO(2)) for the same adsorption sites: the surface oxygen vacancies (OV). The model fairly reproduces the experimental measurements of both the steady-state and the dynamic response of individual SnO(2) nanowires towards oxidizing gases. Quantitative results indicate that: (1) at room temperature NO(2) adsorbs onto OV more avidly than oxygen; (2) the flux of photons and the NO(2) concentration determine the partition of the two gas populations at the surface; and (3) the band-to-band generation of electron-hole pairs plays a significant role in the photodesorption process of gas molecules. The model also offers a methodology to estimate some fundamental parameters, such as the adsorption rates and the photodesorption cross sections of oxidizing molecules interacting with the nanowires' surface. All these results, enabled by the use of individual nanowires, provide deep insight about how to control the response of metal oxide nanowires towards oxidizing gases, paving the way to the development and consolidation of this family of low consumption conductometric sensors operable at room temperature.
本文提出了一个定量模型,以阐明光激活金属氧化物气体传感器中入射光子对氧化气体最终响应的作用。该模型基于空气中的氧分子与氧化目标气体(如 NO(2))竞争相同的吸附位:表面氧空位(OV)。该模型很好地再现了单个 SnO(2)纳米线对氧化气体的稳态和动态响应的实验测量。定量结果表明:(1) 在室温下,NO(2)比氧气更易吸附在 OV 上;(2) 光子通量和 NO(2)浓度决定了表面上两种气体群体的分配;(3) 带间电子-空穴对的产生在气体分子的光解吸过程中起着重要作用。该模型还提供了一种估计基本参数的方法,例如与纳米线表面相互作用的氧化分子的吸附速率和光解吸截面。所有这些结果,通过使用单个纳米线实现,深入了解了如何控制金属氧化物纳米线对氧化气体的响应,为开发和巩固这种在室温下运行的低功耗电导传感器家族铺平了道路。