Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA.
Phys Chem Chem Phys. 2009 Dec 14;11(46):11006-12. doi: 10.1039/b912641d. Epub 2009 Oct 8.
Quantum chemical and ab initio thermodynamic calculations were used to investigate the mechanism of CO oxidation on Au/TiO(2) and the geometric and electronic character of active sites. We show that CO oxidation over Au/TiO(2) might proceed via a two site mechanism with oxygen adsorbing and dissociating at the Au/oxide interface or the perimeter of Au particles and CO adsorbing on Au sites away from the interface. The electronic fingerprint of active Au is a function of external conditions, and it is likely that most Au atoms are populated by CO and electronically neutral. Under highly oxidizing conditions, the Au/oxide interface can accommodate oxygen adsorbates, and these Au atoms will have a cationic fingerprint due to their interaction with oxygen. The choice of precursors used to synthesize catalysts as well as the catalyst preparation and pretreatment procedures significantly affect the electronic characteristics and catalytic activity of Au nano-structures. Based on our first-principles analysis we propose a hypothesis that might help us understand these experimental observations.
采用量子化学和从头算热力学计算方法研究了 CO 在 Au/TiO2 上氧化的反应机理以及活性位的几何和电子特征。结果表明,Au/TiO2 上的 CO 氧化可能通过两种途径进行:一种是氧在 Au/氧化物界面或 Au 颗粒边界吸附和解离,另一种是 CO 在远离界面的 Au 位上吸附。活性 Au 的电子指纹是外部条件的函数,大多数 Au 原子可能被 CO 占据且处于电中性。在强氧化条件下,Au/氧化物界面可以容纳氧吸附物,这些 Au 原子由于与氧相互作用而具有正电荷指纹。用于合成催化剂的前体以及催化剂的制备和预处理程序的选择显著影响 Au 纳米结构的电子特性和催化活性。基于我们的第一性原理分析,我们提出了一个假设,这可能有助于我们理解这些实验观察。