Suppr超能文献

人工神经网络在前列腺活检结果中的内部验证。

Internal validation of an artificial neural network for prostate biopsy outcome.

机构信息

Department of Urology, Charité Universitätsmedizin Berlin, Berlin, Germany.

出版信息

Int J Urol. 2010 Jan;17(1):62-8. doi: 10.1111/j.1442-2042.2009.02417.x. Epub 2009 Nov 18.

Abstract

OBJECTIVES

To carry out an internal validation of the retrospectively trained artificial neural network (ANN) 'ProstataClass'.

METHODS

A prospectively collected database of 393 patients undergoing 8-12 core prostate biopsy was analyzed. Data of these patients were applied to the online available ANN 'ProstataClass' using the Elecsys total prostate-specific antigen (tPSA) and free PSA (fPSA) assays. Beside the internal validation of the ANN 'ProstataClass' an additional ANN (named as ANN internal validation: ANNiv) only using the 393 prospective patient data was evaluated. The new ANN model was constructed with the MATLAB Neural Network Toolbox. Diagnostic accuracy was evaluated by receiver operator characteristic (ROC) curves comparing the areas under the ROC curves (AUC) and specificities at 90% and 95% sensitivity.

RESULTS

Within a tPSA range of 1.0-22.8 ng/mL, 229 men (58.3%) had prostate cancer (PCa). tPSA, %fPSA and the number of positive digital rectal examinations (DRE) differed significantly from the cohort of patients of the ANN 'ProstataClass', whereas age and prostate volume were comparable. AUCs for tPSA, %fPSA and the ANN 'ProstataClass' were 0.527, 0.726 and 0.747 (P = 0.085 between %fPSA and ANN). The AUC of the ANNiv (0.754) was significantly better compared with %fPSA (P = 0.021), whereas the AUC of two ANN models built on external cohorts (0.726 and 0.729) showed no differences to %fPSA and the other ANN models.

CONCLUSIONS

Significant differences of DRE status and %fPSA medians decrease the power of the 'ProstataClass' ANN in the internal validation cohort. The effect of retrospective data evaluation the 'ProstataClass' cohort and prospective fPSA measurement may be responsible for %fPSA differences. All ANN models built with different PSA and fPSA assays performed equally if applied to the two cohorts.

摘要

目的

对回顾性训练的人工神经网络(ANN)“ProstataClass”进行内部验证。

方法

分析了 393 例接受 8-12 核心前列腺活检的前瞻性患者数据库。使用 Elecsys 总前列腺特异性抗原(tPSA)和游离 PSA(fPSA)检测,将这些患者的数据应用于在线 ANN“ProstataClass”。除了对 ANN“ProstataClass”进行内部验证外,还评估了仅使用 393 例前瞻性患者数据的另一个 ANN(称为 ANN 内部验证:ANNiv)。新的 ANN 模型使用 MATLAB 神经网络工具箱构建。通过比较 ROC 曲线下的面积(AUC)和 90%和 95%灵敏度时的特异性来评估诊断准确性。

结果

在 1.0-22.8ng/mL 的 tPSA 范围内,229 名男性(58.3%)患有前列腺癌(PCa)。tPSA、%fPSA 和阳性数字直肠检查(DRE)的数量与 ANN“ProstataClass”的患者队列有显著差异,而年龄和前列腺体积则相似。tPSA、%fPSA 和 ANN“ProstataClass”的 AUC 分别为 0.527、0.726 和 0.747(%fPSA 和 ANN 之间 P=0.085)。ANNiv 的 AUC(0.754)明显优于%fPSA(P=0.021),而基于外部队列构建的两个 ANN 模型(0.726 和 0.729)的 AUC 与%fPSA 和其他 ANN 模型没有差异。

结论

DRE 状态和%fPSA 中位数的显著差异降低了“ProstataClass”ANN 在内部验证队列中的效力。回顾性数据分析“ProstataClass”队列和前瞻性 fPSA 测量的效果可能是导致%fPSA 差异的原因。如果将不同的 PSA 和 fPSA 检测应用于两个队列,所有基于不同 PSA 和 fPSA 检测构建的 ANN 模型的性能都相同。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验