Suppr超能文献

解剖分割通过对1H磁共振波谱成像进行人工神经网络分析来改善前列腺癌检测。

Anatomic segmentation improves prostate cancer detection with artificial neural networks analysis of 1H magnetic resonance spectroscopic imaging.

作者信息

Matulewicz Lukasz, Jansen Jacobus F A, Bokacheva Louisa, Vargas Hebert Alberto, Akin Oguz, Fine Samson W, Shukla-Dave Amita, Eastham James A, Hricak Hedvig, Koutcher Jason A, Zakian Kristen L

机构信息

Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York, USA; Department of Radiotherapy and Brachytherapy Planning, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice, Poland.

出版信息

J Magn Reson Imaging. 2014 Dec;40(6):1414-21. doi: 10.1002/jmri.24487. Epub 2013 Nov 15.

Abstract

PURPOSE

To assess whether an artificial neural network (ANN) model is a useful tool for automatic detection of cancerous voxels in the prostate from (1)H-MRSI datasets and whether the addition of information about anatomical segmentation improves the detection of cancer.

MATERIALS AND METHODS

The Institutional Review Board approved this HIPAA-compliant study and waived informed consent. Eighteen men with prostate cancer (median age, 55 years; range, 36-71 years) who underwent endorectal MRI/MRSI before radical prostatectomy were included in this study. These patients had at least one cancer area on whole-mount histopathological map and at least one matching MRSI voxel suspicious for cancer detected. Two ANN models for automatic classification of MRSI voxels in the prostate were implemented and compared: model 1, which used only spectra as input, and model 2, which used the spectra plus information from anatomical segmentation. The models were trained, tested and validated using spectra from voxels that the spectroscopist had designated as cancer and that were verified on histopathological maps.

RESULTS

At ROC analysis, model 2 (AUC = 0.968) provided significantly better (P = 0.03) classification of cancerous voxels than did model 1 (AUC = 0.949).

CONCLUSION

Automatic analysis of prostate MRSI to detect cancer using ANN model is feasible. Application of anatomical segmentation from MRI as an additional input to ANN improves the accuracy of detecting cancerous voxels from MRSI.

摘要

目的

评估人工神经网络(ANN)模型是否是一种用于从氢磁共振波谱成像(¹H-MRSI)数据集中自动检测前列腺癌性体素的有用工具,以及添加解剖分割信息是否能改善癌症检测。

材料与方法

机构审查委员会批准了这项符合健康保险流通与责任法案(HIPAA)的研究并豁免了知情同意。本研究纳入了18例前列腺癌男性患者(中位年龄55岁;范围36 - 71岁),这些患者在根治性前列腺切除术前行直肠内MRI/MRSI检查。这些患者在全层组织病理学图谱上至少有一个癌灶区域,且至少检测到一个匹配的可疑癌性MRSI体素。实施并比较了两种用于前列腺MRSI体素自动分类的ANN模型:模型1仅使用波谱作为输入,模型2使用波谱加上来自解剖分割的信息。使用光谱学家指定为癌症且在组织病理学图谱上得到验证的体素波谱对模型进行训练、测试和验证。

结果

在ROC分析中,模型2(AUC = 0.968)对癌性体素的分类明显优于(P = 0.03)模型1(AUC = 0.949)。

结论

使用ANN模型对前列腺MRSI进行自动分析以检测癌症是可行的。将MRI的解剖分割作为ANN的额外输入可提高从MRSI检测癌性体素的准确性。

相似文献

引用本文的文献

6

本文引用的文献

4
Prostate MRI and 3D MR spectroscopy: how we do it.前列腺 MRI 与 3D MR 波谱:我们的做法。
AJR Am J Roentgenol. 2010 Jun;194(6):1414-26. doi: 10.2214/AJR.10.4312.
6

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验