Suppr超能文献

海洋细菌碱性磷酸酶的亚细胞定位。

Subcellular localization of marine bacterial alkaline phosphatases.

机构信息

Department of Biological Sciences, Marine Science Program, University of South Carolina, Columbia, SC 29208, USA.

出版信息

Proc Natl Acad Sci U S A. 2009 Dec 15;106(50):21219-23. doi: 10.1073/pnas.0907586106. Epub 2009 Nov 19.

Abstract

Bacterial alkaline phosphatases (APases) are important enzymes in organophosphate utilization in the ocean. The subcellular localization of APases has significant ecological implications for marine biota but is largely unknown. The extensive metagenomic sequence databases from the Global Ocean Sampling Expedition provide an opportunity to address this question. A bioinformatics pipeline was developed to identify marine bacterial APases from the metagenomic databases, and a consensus classification algorithm was designed to predict their subcellular localizations. We identified 3,733 bacterial APase sequences (including PhoA, PhoD, and PhoX) and found that cytoplasmic (41%) and extracellular (30%) APases exceed their periplasmic (17%), outer membrane (12%), and inner membrane (0.9%) counterparts. The unexpectedly high abundance of cytoplasmic APases suggests that the transport and intracellular hydrolysis of small organophosphate molecules is an important mechanism for bacterial acquisition of phosphorus (P) in the surface ocean. On average, each marine bacterium possessed at least one suite of uptake of glycerol phosphate (ugp) genes (e.g., ugpA, ugpB, ugpC, ugpE) for dissolved organic phosphorus (DOP) transport, but only half of them had ugpQ, which hydrolyzes transported DOP, indicating that cytoplasmic APases play a role in hydrolyzing transported DOP. The most abundant heterotrophic marine bacteria, alpha- and gamma-Proteobacteria, might hydrolyze DOP outside the cytoplasmic membrane, but the former could also transport and hydrolyze DOP in the cytoplasm. The abundant extracellular APases could provide bioavailable P for organisms that cannot directly access organophosphates, and thereby increase marine biological productivity and diversity.

摘要

细菌碱性磷酸酶(APases)是海洋中有机磷利用的重要酶。APases 的亚细胞定位对海洋生物群具有重要的生态意义,但很大程度上尚不清楚。全球海洋采样考察的广泛宏基因组序列数据库为解决这一问题提供了机会。开发了一种生物信息学管道,从宏基因组数据库中鉴定海洋细菌的 APases,并设计了一种共识分类算法来预测它们的亚细胞定位。我们鉴定了 3733 个细菌 APase 序列(包括 PhoA、PhoD 和 PhoX),发现细胞质(41%)和细胞外(30%)APases 超过其周质(17%)、外膜(12%)和内膜(0.9%)。细胞质 APases 的异常高丰度表明,小分子有机磷的运输和细胞内水解是细菌在海洋表面获取磷(P)的重要机制。平均而言,每种海洋细菌至少拥有一套用于溶解有机磷(DOP)运输的甘油磷酸(ugp)基因(如 ugpA、ugpB、ugpC、ugpE),但只有一半的细菌拥有 ugpQ,它可以水解运输的 DOP,这表明细胞质 APases 在水解运输的 DOP 中发挥作用。最丰富的异养海洋细菌,α-和γ-变形菌,可能在细胞质膜外水解 DOP,但前者也可以在细胞质中运输和水解 DOP。丰富的细胞外 APases 可为无法直接接触有机磷的生物提供可利用的 P,从而增加海洋生物生产力和多样性。

相似文献

1
Subcellular localization of marine bacterial alkaline phosphatases.海洋细菌碱性磷酸酶的亚细胞定位。
Proc Natl Acad Sci U S A. 2009 Dec 15;106(50):21219-23. doi: 10.1073/pnas.0907586106. Epub 2009 Nov 19.

引用本文的文献

8
The microbial phosphorus cycle in aquatic ecosystems.水生生态系统中的微生物磷循环。
Nat Rev Microbiol. 2025 Apr;23(4):239-255. doi: 10.1038/s41579-024-01119-w. Epub 2024 Nov 11.

本文引用的文献

2
CDD: specific functional annotation with the Conserved Domain Database.CDD:使用保守结构域数据库进行特定功能注释。
Nucleic Acids Res. 2009 Jan;37(Database issue):D205-10. doi: 10.1093/nar/gkn845. Epub 2008 Nov 4.
5
CAMERA: a community resource for metagenomics.CAMERA:宏基因组学的社区资源。
PLoS Biol. 2007 Mar;5(3):e75. doi: 10.1371/journal.pbio.0050075.
6
MEGAN analysis of metagenomic data.宏基因组数据的MEGAN分析
Genome Res. 2007 Mar;17(3):377-86. doi: 10.1101/gr.5969107. Epub 2007 Jan 25.
7
Methods for predicting bacterial protein subcellular localization.预测细菌蛋白质亚细胞定位的方法。
Nat Rev Microbiol. 2006 Oct;4(10):741-51. doi: 10.1038/nrmicro1494. Epub 2006 Sep 11.
8
Phosphate depletion in the western North Atlantic Ocean.北大西洋西部的磷酸盐耗竭。
Science. 2000 Aug 4;289(5480):759-62. doi: 10.1126/science.289.5480.759.
9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验