Division of Pulmonary, Critical Care and Sleep Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA.
Sleep. 2009 Nov;32(11):1521-7. doi: 10.1093/sleep/32.11.1521.
This is a feasibility study designed to evaluate the accuracy of thermal infrared imaging (TIRI) as a noncontact method to monitor airflow during polysomnography and to ascertain the chance-corrected agreement (K) between TIRI and conventional airflow channels (nasal pressure [Pn], oronasal thermistor and expired CO2 [P(E)CO2]) in the detection of apnea and hypopnea.
Subjects were recruited to undergo polysomnography for 1 to 2 hours, during which simultaneous recordings from electroencephalography, electrooculography, electromyography, respiratory impedance plethysmography, conventional airflow channels, and TIRI were obtained.
University-affiliated, American Academy of Sleep Medicine-accredited sleep disorders center.
Fourteen volunteers without a history of sleep disordered breathing and 13 patients with a history of obstructive sleep apnea were recruited.
In the detection of apnea and hypopnea, excellent agreement was noted between TIRI and thermistor (kappa = 0.92, Bayesian Credible Interval [BCI] 0.86, 0.96; pkappa = 0.99). Good agreement was noted between TIRI and Pn (kappa = 0.83, BCI 0.70, 0.90; pkappa = 0.98) and between TIRI and P(E)CO2 (kappa = 0.80, BCI 0.66, 0.89; pkappa = 0.94).
TIRI is a feasible noncontact technology to monitor airflow during polysomnography. In its current methodologic incarnation, it demonstrates a high degree of chance-corrected agreement with the oronasal thermistor in the detection of apnea and hypopneas but demonstrates a lesser degree of chance-corrected agreement with Pn. Further overnight validation studies must be performed to evaluate its potential in clinical sleep medicine.
这是一项可行性研究,旨在评估热红外成像(TIRI)作为一种非接触方法监测多导睡眠图期间气流的准确性,并确定 TIRI 与传统气流通道(鼻压[Pn]、口鼻热敏电阻和呼气 CO2[P(E)CO2])在检测呼吸暂停和低通气方面的校正后机会一致性(K)。
招募受试者进行 1 至 2 小时的多导睡眠图检查,在此期间同时记录脑电图、眼电图、肌电图、呼吸阻抗描记图、传统气流通道和 TIRI。
隶属于大学的美国睡眠医学协会认可的睡眠障碍中心。
招募了 14 名无睡眠呼吸障碍病史的志愿者和 13 名阻塞性睡眠呼吸暂停病史的患者。
在检测呼吸暂停和低通气方面,TIRI 与热敏电阻之间存在极好的一致性(kappa=0.92,贝叶斯可信区间[BCI]0.86,0.96;pkappa=0.99)。TIRI 与 Pn 之间存在良好的一致性(kappa=0.83,BCI0.70,0.90;pkappa=0.98),与 P(E)CO2 之间也存在良好的一致性(kappa=0.80,BCI0.66,0.89;pkappa=0.94)。
TIRI 是一种可行的非接触技术,可在多导睡眠图期间监测气流。在其当前的方法学表现形式中,它在检测呼吸暂停和低通气方面与口鼻热敏电阻具有高度的校正后机会一致性,但与 Pn 具有较低程度的校正后机会一致性。必须进行进一步的夜间验证研究,以评估其在临床睡眠医学中的潜力。