Suppr超能文献

热红外成像:一种监测多导睡眠图中气流的新方法。

Thermal infrared imaging: a novel method to monitor airflow during polysomnography.

机构信息

Division of Pulmonary, Critical Care and Sleep Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA.

出版信息

Sleep. 2009 Nov;32(11):1521-7. doi: 10.1093/sleep/32.11.1521.

Abstract

STUDY OBJECTIVES

This is a feasibility study designed to evaluate the accuracy of thermal infrared imaging (TIRI) as a noncontact method to monitor airflow during polysomnography and to ascertain the chance-corrected agreement (K) between TIRI and conventional airflow channels (nasal pressure [Pn], oronasal thermistor and expired CO2 [P(E)CO2]) in the detection of apnea and hypopnea.

DESIGN

Subjects were recruited to undergo polysomnography for 1 to 2 hours, during which simultaneous recordings from electroencephalography, electrooculography, electromyography, respiratory impedance plethysmography, conventional airflow channels, and TIRI were obtained.

SETTING

University-affiliated, American Academy of Sleep Medicine-accredited sleep disorders center.

PATIENTS OR PARTICIPANTS

Fourteen volunteers without a history of sleep disordered breathing and 13 patients with a history of obstructive sleep apnea were recruited.

MEASUREMENTS AND RESULTS

In the detection of apnea and hypopnea, excellent agreement was noted between TIRI and thermistor (kappa = 0.92, Bayesian Credible Interval [BCI] 0.86, 0.96; pkappa = 0.99). Good agreement was noted between TIRI and Pn (kappa = 0.83, BCI 0.70, 0.90; pkappa = 0.98) and between TIRI and P(E)CO2 (kappa = 0.80, BCI 0.66, 0.89; pkappa = 0.94).

CONCLUSIONS

TIRI is a feasible noncontact technology to monitor airflow during polysomnography. In its current methodologic incarnation, it demonstrates a high degree of chance-corrected agreement with the oronasal thermistor in the detection of apnea and hypopneas but demonstrates a lesser degree of chance-corrected agreement with Pn. Further overnight validation studies must be performed to evaluate its potential in clinical sleep medicine.

摘要

研究目的

这是一项可行性研究,旨在评估热红外成像(TIRI)作为一种非接触方法监测多导睡眠图期间气流的准确性,并确定 TIRI 与传统气流通道(鼻压[Pn]、口鼻热敏电阻和呼气 CO2[P(E)CO2])在检测呼吸暂停和低通气方面的校正后机会一致性(K)。

设计

招募受试者进行 1 至 2 小时的多导睡眠图检查,在此期间同时记录脑电图、眼电图、肌电图、呼吸阻抗描记图、传统气流通道和 TIRI。

地点

隶属于大学的美国睡眠医学协会认可的睡眠障碍中心。

患者或参与者

招募了 14 名无睡眠呼吸障碍病史的志愿者和 13 名阻塞性睡眠呼吸暂停病史的患者。

测量和结果

在检测呼吸暂停和低通气方面,TIRI 与热敏电阻之间存在极好的一致性(kappa=0.92,贝叶斯可信区间[BCI]0.86,0.96;pkappa=0.99)。TIRI 与 Pn 之间存在良好的一致性(kappa=0.83,BCI0.70,0.90;pkappa=0.98),与 P(E)CO2 之间也存在良好的一致性(kappa=0.80,BCI0.66,0.89;pkappa=0.94)。

结论

TIRI 是一种可行的非接触技术,可在多导睡眠图期间监测气流。在其当前的方法学表现形式中,它在检测呼吸暂停和低通气方面与口鼻热敏电阻具有高度的校正后机会一致性,但与 Pn 具有较低程度的校正后机会一致性。必须进行进一步的夜间验证研究,以评估其在临床睡眠医学中的潜力。

相似文献

1
Thermal infrared imaging: a novel method to monitor airflow during polysomnography.
Sleep. 2009 Nov;32(11):1521-7. doi: 10.1093/sleep/32.11.1521.
2
The use of combined thermal/pressure polyvinylidene fluoride film airflow sensor in polysomnography.
Sleep Breath. 2013 Dec;17(4):1267-73. doi: 10.1007/s11325-013-0832-5. Epub 2013 May 29.
5
Snoring exclusively during nasal breathing: a newly described respiratory pattern during sleep.
Sleep Breath. 2014 Mar;18(1):159-64. doi: 10.1007/s11325-013-0864-x. Epub 2013 May 29.
7
Automatic non-invasive differentiation of obstructive and central hypopneas with nasal airflow compared to esophageal pressure.
Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:6142-5. doi: 10.1109/IEMBS.2010.5627787.
9
Inspiratory airflow dynamics during sleep in women with fibromyalgia.
Sleep. 2004 May 1;27(3):459-66. doi: 10.1093/sleep/27.3.459.

引用本文的文献

1
Thermal Cameras for Continuous and Contactless Respiration Monitoring.
Sensors (Basel). 2024 Dec 19;24(24):8118. doi: 10.3390/s24248118.
2
Flow-Field Inference for Turbulent Exhale Flow Measurement.
Diagnostics (Basel). 2024 Jul 24;14(15):1596. doi: 10.3390/diagnostics14151596.
3
Convolutional neural network based on photoplethysmography signals for sleep apnea syndrome detection.
Front Neurosci. 2023 Jul 21;17:1222715. doi: 10.3389/fnins.2023.1222715. eCollection 2023.
4
7
Towards a Contactless Stress Classification Using Thermal Imaging.
Sensors (Basel). 2022 Jan 27;22(3):976. doi: 10.3390/s22030976.
8
Non-Contact Spirometry Using a Mobile Thermal Camera and AI Regression.
Sensors (Basel). 2021 Nov 15;21(22):7574. doi: 10.3390/s21227574.
9
Advancements in Methods and Camera-Based Sensors for the Quantification of Respiration.
Sensors (Basel). 2020 Dec 17;20(24):7252. doi: 10.3390/s20247252.
10
Analysis of the parameters of respiration patterns extracted from thermal image sequences.
Biocybern Biomed Eng. 2016;36(4):731-741. doi: 10.1016/j.bbe.2016.07.006. Epub 2016 Aug 20.

本文引用的文献

1
Thermistor at a distance: unobtrusive measurement of breathing.
IEEE Trans Biomed Eng. 2010 Apr;57(4):988-98. doi: 10.1109/TBME.2009.2032415. Epub 2009 Sep 29.
2
Virtual thermistor.
Annu Int Conf IEEE Eng Med Biol Soc. 2007;2007:250-3. doi: 10.1109/IEMBS.2007.4352271.
4
Noncontact measurement of breathing function.
IEEE Eng Med Biol Mag. 2006 May-Jun;25(3):57-67. doi: 10.1109/memb.2006.1636352.
5
Validation of nasal pressure for the identification of apneas/hypopneas during sleep.
Am J Respir Crit Care Med. 2002 Aug 1;166(3):386-91. doi: 10.1164/rccm.2105085.
6
Accuracy of nasal cannula pressure recordings for assessment of ventilation during sleep.
Am J Respir Crit Care Med. 2001 Nov 15;164(10 Pt 1):1914-9. doi: 10.1164/ajrccm.164.10.2102104.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验