Department of Chemical Engineering and Biotechnology, University of Cambridge, Pembroke Street, Cambridge, UK, CB2 3RA.
Langmuir. 2010 Mar 16;26(6):3962-71. doi: 10.1021/la903334m.
Polymer films may be formed by drying aqueous suspensions of colloidal polymer particles (latexes) on a substrate. Higher-performance films may be obtained by using nanocomposite particles in the latexes. In particular, polymer-clay nanocomposites show good potential in producing stiff, optically transparent, scratch-resistant coatings. The final film must be continuous (i.e., crack-free). This work predicts the minimum temperature, relative to the glass-transition temperature, at which a given suspension forms a crack-free nanocomposite film. The model extends a previous model for film formation with inclusion-free latexes (Routh, A. F.; Russel, W. B. Langmuir 1999, 15, 7762-7773). The inclusions are modeled as rigid cylinders, and the polymer is modeled as linearly viscoelastic. The major term arising in the extended model is the interfacial shear stress between the polymer and the inclusions. Film formation slows as the shear stress increases, and this effect is proportional to the magnitude of the stress, the inclusion volume fraction, and the inclusion aspect ratio.
聚合物薄膜可以通过在基底上干燥胶体聚合物颗粒(乳胶)的水悬浮液来形成。通过在乳胶中使用纳米复合颗粒,可以获得性能更高的薄膜。特别是,聚合物-粘土纳米复合材料在生产刚性、光学透明、耐划伤的涂料方面具有良好的潜力。最终的薄膜必须是连续的(即无裂纹)。这项工作预测了给定悬浮液形成无裂纹纳米复合材料薄膜的最低温度,相对于玻璃化转变温度。该模型扩展了以前关于无夹杂物乳胶成膜的模型(Routh,A.F.;Russel,W.B. Langmuir 1999,15,7762-7773)。夹杂物被建模为刚性圆柱体,聚合物被建模为线性粘弹性。扩展模型中出现的主要项是聚合物和夹杂物之间的界面剪切应力。随着剪切应力的增加,成膜速度减慢,这种效应与应力的大小、夹杂物的体积分数和夹杂物的纵横比成正比。