POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta zentroa, Avda. Tolosa 72, 20018 Donostia-San Sebastián, Spain.
Langmuir. 2013 Feb 12;29(6):2044-53. doi: 10.1021/la3049967. Epub 2013 Jan 31.
In the film formation of latex, particle deformation can occur by processes of wet sintering, dry sintering, or capillary action. When latex films dry nonuniformly and when particles deform and coalesce while the film is still wet, a detrimental skin layer will develop at the film surface. In their process model, Routh and Russel proposed that the operative particle deformation mechanism can be determined by the values of control parameters on a deformation map. Here, the film formation processes of three methyl methacrylate/butyl acrylate copolymer latexes with high glass transition temperatures (T(g)), ranging from 45 to 64 °C, have been studied when heated by infrared radiation. Adjusting the infrared (IR) power density enables the film temperature, polymer viscosity, and evaporation rate during latex film formation to be controlled precisely. Different polymer particle deformation mechanisms have been demonstrated for the same latex under a variety of film formation process conditions. When the temperature is too high, a skin layer develops. On the other hand, when the temperature is too low, particles deform by dry sintering, and the process requires extended time periods. The deduced mechanisms can be interpreted and explained by the Routh-Russel deformation maps. Film formation of hard (high T(g)) coatings is achieved without using coalescing aids that emit volatile organic compounds (VOCs), which is a significant technical achievement.
在乳胶成膜过程中,颗粒变形可以通过湿烧结、干烧结或毛细作用等过程发生。当乳胶膜不均匀干燥,颗粒在膜仍湿时变形并聚结时,会在膜表面形成有害的皮层。在他们的过程模型中,Routh 和 Russel 提出,可通过变形图上的控制参数值来确定有效的颗粒变形机制。在这里,研究了三种甲基丙烯酸甲酯/丙烯酸丁酯共聚物乳胶的成膜过程,这些乳胶的玻璃化转变温度(T(g))较高,范围为 45 至 64°C,当用红外辐射加热时。调整红外(IR)功率密度可以精确控制乳胶膜形成过程中的膜温度、聚合物粘度和蒸发速率。在不同的成膜工艺条件下,同一乳胶表现出不同的聚合物颗粒变形机制。当温度过高时,会形成皮层。另一方面,当温度过低时,颗粒通过干烧结变形,并且该过程需要延长时间。可以通过 Routh-Russel 变形图来解释和解释推断出的机制。硬(高 T(g))涂层的成膜无需使用会释放挥发性有机化合物(VOC)的成膜助剂,这是一项重大技术成就。