Xue Xin, Wu Jia-Jia, Xing Xiang-Xin, Ma Jie, Zhang Jun-Peng, Xiang Yun-Ting, Zheng Mou-Xiong, Hua Xu-Yun, Xu Jian-Guang
Department of Rehabilitation Medicine Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Shanghai University of Traditional Chinese Medicine Shanghai China.
Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation Ministry of Education Shanghai China.
MedComm (2020). 2024 Oct 6;5(10):e764. doi: 10.1002/mco2.764. eCollection 2024 Oct.
This study investigated alterations in functional connectivity (FC) within cortico-basal ganglia-thalamo-cortical (CBTC) circuits and identified critical connections influencing poststroke motor recovery, offering insights into optimizing brain modulation strategies to address the limitations of traditional single-target stimulation. We delineated individual-specific parallel loops of CBTC through probabilistic tracking and voxel connectivity profiles-based segmentation and calculated FC values in poststroke patients and healthy controls, comparing with conventional atlas-based FC calculation. Support vector machine (SVM) analysis distinguished poststroke patients from controls. Connectome-based predictive modeling (CPM) used FC values within CBTC circuits to predict upper limb motor function. Poststroke patients exhibited decreased ipsilesional connectivity within the individual-specific CBTC circuits. SVM analysis achieved 82.8% accuracy, 76.6% sensitivity, and 89.1% specificity using individual-specific parallel loops. Additionally, CPM featuring positive connections/all connections significantly predicted Fugl-Meyer assessment of upper extremity scores. There were no significant differences in the group comparisons of conventional atlas-based FC values, and the FC values resulted in SVM accuracy of 75.0%, sensitivity of 67.2%, and specificity of 82.8%, with no significant CPM capability. Individual-specific parallel loops show superior predictive power for assessing upper limb motor function in poststroke patients. Precise mapping of the disease-related circuits is essential for understanding poststroke brain reorganization.
本研究调查了皮质-基底神经节-丘脑-皮质(CBTC)回路内的功能连接(FC)变化,并确定了影响中风后运动恢复的关键连接,为优化脑调节策略以解决传统单靶点刺激的局限性提供了见解。我们通过概率追踪和基于体素连接轮廓的分割描绘了个体特异性的CBTC平行环路,并计算了中风后患者和健康对照的FC值,与传统的基于图谱的FC计算方法进行比较。支持向量机(SVM)分析区分了中风后患者和对照。基于连接组的预测模型(CPM)使用CBTC回路内的FC值来预测上肢运动功能。中风后患者在个体特异性CBTC回路内同侧连接性降低。使用个体特异性平行环路时,SVM分析的准确率达到82.8%,灵敏度为76.6%,特异性为89.1%。此外,以正性连接/所有连接为特征的CPM显著预测了上肢Fugl-Meyer评估得分。基于传统图谱的FC值在组间比较中无显著差异,且FC值导致SVM的准确率为75.0%,灵敏度为67.2%,特异性为82.8%,无显著的CPM能力。个体特异性平行环路在评估中风后患者上肢运动功能方面显示出卓越的预测能力。精确绘制疾病相关回路对于理解中风后脑重组至关重要。