Systems Analysis Modelling and Prediction Group, University of Oxford, Oxford, OX1 3PJ, UK.
IEEE Trans Biomed Eng. 2010 Apr;57(4):884-93. doi: 10.1109/TBME.2009.2036000. Epub 2009 Nov 20.
Tracking Parkinson's disease (PD) symptom progression often uses the unified Parkinson's disease rating scale (UPDRS) that requires the patient's presence in clinic, and time-consuming physical examinations by trained medical staff. Thus, symptom monitoring is costly and logistically inconvenient for patient and clinical staff alike, also hindering recruitment for future large-scale clinical trials. Here, for the first time, we demonstrate rapid, remote replication of UPDRS assessment with clinically useful accuracy (about 7.5 UPDRS points difference from the clinicians' estimates), using only simple, self-administered, and noninvasive speech tests. We characterize speech with signal processing algorithms, extracting clinically useful features of average PD progression. Subsequently, we select the most parsimonious model with a robust feature selection algorithm, and statistically map the selected subset of features to UPDRS using linear and nonlinear regression techniques that include classical least squares and nonparametric classification and regression trees. We verify our findings on the largest database of PD speech in existence (approximately 6000 recordings from 42 PD patients, recruited to a six-month, multicenter trial). These findings support the feasibility of frequent, remote, and accurate UPDRS tracking. This technology could play a key part in telemonitoring frameworks that enable large-scale clinical trials into novel PD treatments.
跟踪帕金森病 (PD) 症状进展通常使用统一帕金森病评定量表 (UPDRS),这需要患者在诊所就诊,并由经过培训的医务人员进行耗时的体格检查。因此,症状监测既昂贵又对患者和临床工作人员的后勤工作不方便,也阻碍了未来大规模临床试验的招募。在这里,我们首次证明,仅使用简单、自我管理和非侵入性的语音测试,就可以快速、远程复制具有临床有用准确性的 UPDRS 评估(与临床医生的估计相差约 7.5 个 UPDRS 点)。我们使用信号处理算法对语音进行特征提取,提取出具有临床价值的平均 PD 进展特征。随后,我们使用稳健的特征选择算法选择最简约的模型,并使用包括经典最小二乘法和非参数分类回归树在内的线性和非线性回归技术,将所选特征子集映射到 UPDRS 上。我们在现有的最大 PD 语音数据库(大约有 6000 名来自 42 名 PD 患者的录音,参加了为期六个月的多中心试验)上验证了我们的发现。这些发现支持频繁、远程和准确的 UPDRS 跟踪的可行性。这项技术可以在远程监测框架中发挥关键作用,从而实现对新型 PD 治疗的大规模临床试验。