Suppr超能文献

通过非侵入性语音测试准确监测帕金森病的进展。

Accurate telemonitoring of Parkinson's disease progression by noninvasive speech tests.

机构信息

Systems Analysis Modelling and Prediction Group, University of Oxford, Oxford, OX1 3PJ, UK.

出版信息

IEEE Trans Biomed Eng. 2010 Apr;57(4):884-93. doi: 10.1109/TBME.2009.2036000. Epub 2009 Nov 20.

Abstract

Tracking Parkinson's disease (PD) symptom progression often uses the unified Parkinson's disease rating scale (UPDRS) that requires the patient's presence in clinic, and time-consuming physical examinations by trained medical staff. Thus, symptom monitoring is costly and logistically inconvenient for patient and clinical staff alike, also hindering recruitment for future large-scale clinical trials. Here, for the first time, we demonstrate rapid, remote replication of UPDRS assessment with clinically useful accuracy (about 7.5 UPDRS points difference from the clinicians' estimates), using only simple, self-administered, and noninvasive speech tests. We characterize speech with signal processing algorithms, extracting clinically useful features of average PD progression. Subsequently, we select the most parsimonious model with a robust feature selection algorithm, and statistically map the selected subset of features to UPDRS using linear and nonlinear regression techniques that include classical least squares and nonparametric classification and regression trees. We verify our findings on the largest database of PD speech in existence (approximately 6000 recordings from 42 PD patients, recruited to a six-month, multicenter trial). These findings support the feasibility of frequent, remote, and accurate UPDRS tracking. This technology could play a key part in telemonitoring frameworks that enable large-scale clinical trials into novel PD treatments.

摘要

跟踪帕金森病 (PD) 症状进展通常使用统一帕金森病评定量表 (UPDRS),这需要患者在诊所就诊,并由经过培训的医务人员进行耗时的体格检查。因此,症状监测既昂贵又对患者和临床工作人员的后勤工作不方便,也阻碍了未来大规模临床试验的招募。在这里,我们首次证明,仅使用简单、自我管理和非侵入性的语音测试,就可以快速、远程复制具有临床有用准确性的 UPDRS 评估(与临床医生的估计相差约 7.5 个 UPDRS 点)。我们使用信号处理算法对语音进行特征提取,提取出具有临床价值的平均 PD 进展特征。随后,我们使用稳健的特征选择算法选择最简约的模型,并使用包括经典最小二乘法和非参数分类回归树在内的线性和非线性回归技术,将所选特征子集映射到 UPDRS 上。我们在现有的最大 PD 语音数据库(大约有 6000 名来自 42 名 PD 患者的录音,参加了为期六个月的多中心试验)上验证了我们的发现。这些发现支持频繁、远程和准确的 UPDRS 跟踪的可行性。这项技术可以在远程监测框架中发挥关键作用,从而实现对新型 PD 治疗的大规模临床试验。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验