Suppr超能文献

自组装人工纤毛。

Self-assembled artificial cilia.

机构信息

J Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia.

出版信息

Proc Natl Acad Sci U S A. 2010 Feb 2;107(5):1844-7. doi: 10.1073/pnas.0906819106. Epub 2009 Nov 23.

Abstract

Due to their small dimensions, microfluidic devices operate in the low Reynolds number regime. In this case, the hydrodynamics is governed by the viscosity rather than inertia and special elements have to be introduced into the system for mixing and pumping of fluids. Here we report on the realization of an effective pumping device that mimics a ciliated surface and imitates its motion to generate fluid flow. The artificial biomimetic cilia are constructed as long chains of spherical superparamagnetic particles, which self-assemble in an external magnetic field. Magnetic field is also used to actuate the cilia in a simple nonreciprocal manner, resulting in a fluid flow. We prove the concept by measuring the velocity of a cilia-pumped fluid as a function of height above the ciliated surface and investigate the influence of the beating asymmetry on the pumping performance. A numerical simulation was carried out that successfully reproduced the experimentally obtained data.

摘要

由于其尺寸较小,微流控设备在低雷诺数范围内运行。在这种情况下,流体动力学受粘度而非惯性支配,因此必须在系统中引入特殊元件来混合和泵送流体。在这里,我们报告了一种有效的泵送装置的实现,该装置模拟了纤毛表面并模仿其运动以产生流体流动。人工仿生纤毛由长链的球形超顺磁颗粒组成,这些颗粒在外磁场中自组装。磁场也用于以简单的非互易方式致动纤毛,从而产生流体流动。我们通过测量纤毛泵送流体的速度作为距纤毛表面上方高度的函数来证明这一概念,并研究了拍打不对称性对泵送性能的影响。进行了数值模拟,成功再现了实验获得的数据。

相似文献

1
Self-assembled artificial cilia.
Proc Natl Acad Sci U S A. 2010 Feb 2;107(5):1844-7. doi: 10.1073/pnas.0906819106. Epub 2009 Nov 23.
2
Magnetically-actuated artificial cilia for microfluidic propulsion.
Lab Chip. 2011 Jun 21;11(12):2002-10. doi: 10.1039/c0lc00411a. Epub 2011 Feb 18.
3
Analysis of fluid flow around a beating artificial cilium.
Beilstein J Nanotechnol. 2012;3:163-71. doi: 10.3762/bjnano.3.16. Epub 2012 Feb 24.
4
Fluid transport at low Reynolds number with magnetically actuated artificial cilia.
Eur Phys J E Soft Matter. 2009 Feb;28(2):231-42. doi: 10.1140/epje/i2008-10388-1.
6
Asymmetric motion of magnetically actuated artificial cilia.
Lab Chip. 2017 Sep 12;17(18):3138-3145. doi: 10.1039/c7lc00556c.
7
Magnetically actuated artificial cilia: the effect of fluid inertia.
Langmuir. 2012 May 22;28(20):7921-37. doi: 10.1021/la300169f. Epub 2012 May 10.
8
Micro-fluidic actuation using magnetic artificial cilia.
Lab Chip. 2009 Dec 7;9(23):3413-21. doi: 10.1039/b908578e. Epub 2009 Sep 18.
9
Magnetically actuated artificial cilia for optimum mixing performance in microfluidics.
Lab Chip. 2013 Jul 21;13(14):2834-9. doi: 10.1039/c3lc50407g.
10
Metachronal actuation of microscopic magnetic artificial cilia generates strong microfluidic pumping.
Lab Chip. 2020 Oct 7;20(19):3569-3581. doi: 10.1039/d0lc00610f. Epub 2020 Aug 26.

引用本文的文献

1
Ultrasound-activated cilia for biofilm control in indwelling medical devices.
Proc Natl Acad Sci U S A. 2025 May 6;122(18):e2418938122. doi: 10.1073/pnas.2418938122. Epub 2025 Apr 28.
2
Wirelessly Actuated Ciliary Airway Stent for Excessive Mucus Transportation.
Adv Mater Technol. 2023 Dec 13;8(23). doi: 10.1002/admt.202301003. Epub 2023 Oct 31.
4
Nano-kirigami enabled chiral nano-cilia with enhanced circular dichroism at visible wavelengths.
Nanophotonics. 2023 Jan 11;12(8):1459-1468. doi: 10.1515/nanoph-2022-0543. eCollection 2023 Apr.
5
Near-field hydrodynamic interactions determine travelling wave directions of collectively beating cilia.
J R Soc Interface. 2024 Aug;21(217):20240221. doi: 10.1098/rsif.2024.0221. Epub 2024 Aug 7.
6
Integrating chemistry, fluid flow, and mechanics to drive spontaneous formation of three-dimensional (3D) patterns in anchored microstructures.
Proc Natl Acad Sci U S A. 2024 Mar 12;121(11):e2319777121. doi: 10.1073/pnas.2319777121. Epub 2024 Mar 4.
7
Bioinspired magnetic cilia: from materials to applications.
Microsyst Nanoeng. 2023 Dec 13;9:153. doi: 10.1038/s41378-023-00611-2. eCollection 2023.
8
Nonreciprocal interactions give rise to fast cilium synchronization in finite systems.
Proc Natl Acad Sci U S A. 2023 Oct 3;120(40):e2307279120. doi: 10.1073/pnas.2307279120. Epub 2023 Sep 27.
9
3D-Printed Artificial Cilia Arrays: A Versatile Tool for Customizable Mechanosensing.
Adv Sci (Weinh). 2023 Sep;10(26):e2303164. doi: 10.1002/advs.202303164. Epub 2023 Jul 23.
10
Gravity-resisting colloidal collectives.
Sci Adv. 2022 Nov 16;8(46):eade3161. doi: 10.1126/sciadv.ade3161. Epub 2022 Nov 18.

本文引用的文献

1
Printed artificial cilia from liquid-crystal network actuators modularly driven by light.
Nat Mater. 2009 Aug;8(8):677-82. doi: 10.1038/nmat2487. Epub 2009 Jun 28.
2
Confinement effect on interparticle potential in nematic colloids.
Phys Rev Lett. 2008 Dec 5;101(23):237801. doi: 10.1103/PhysRevLett.101.237801. Epub 2008 Dec 4.
3
Fluid transport at low Reynolds number with magnetically actuated artificial cilia.
Eur Phys J E Soft Matter. 2009 Feb;28(2):231-42. doi: 10.1140/epje/i2008-10388-1.
4
Artificial cilia for active micro-fluidic mixing.
Lab Chip. 2008 Apr;8(4):533-41. doi: 10.1039/b717681c. Epub 2008 Mar 4.
5
Fluid mechanics of nodal flow due to embryonic primary cilia.
J R Soc Interface. 2008 May 6;5(22):567-73. doi: 10.1098/rsif.2007.1306.
6
Magnetically actuated nanorod arrays as biomimetic cilia.
Nano Lett. 2007 May;7(5):1428-34. doi: 10.1021/nl070190c. Epub 2007 Apr 10.
7
The origins and the future of microfluidics.
Nature. 2006 Jul 27;442(7101):368-73. doi: 10.1038/nature05058.
8
Interparticle potential and drag coefficient in nematic colloids.
Phys Rev Lett. 2006 May 26;96(20):207801. doi: 10.1103/PhysRevLett.96.207801. Epub 2006 May 23.
9
Hydrodynamic flow patterns and synchronization of beating cilia.
Phys Rev Lett. 2006 Feb 10;96(5):058102. doi: 10.1103/PhysRevLett.96.058102. Epub 2006 Feb 6.
10
Microscopic artificial swimmers.
Nature. 2005 Oct 6;437(7060):862-5. doi: 10.1038/nature04090.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验