Suppr超能文献

微观人工游动体

Microscopic artificial swimmers.

作者信息

Dreyfus Rémi, Baudry Jean, Roper Marcus L, Fermigier Marc, Stone Howard A, Bibette Jérôme

机构信息

Laboratoire Colloïdes et Matériaux Divisés, ESPCI, UMR CNRS 7612 UPMC, ParisTech, 10 rue Vauquelin, 75005 Paris, France.

出版信息

Nature. 2005 Oct 6;437(7060):862-5. doi: 10.1038/nature04090.

Abstract

Microorganisms such as bacteria and many eukaryotic cells propel themselves with hair-like structures known as flagella, which can exhibit a variety of structures and movement patterns. For example, bacterial flagella are helically shaped and driven at their bases by a reversible rotary engine, which rotates the attached flagellum to give a motion similar to that of a corkscrew. In contrast, eukaryotic cells use flagella that resemble elastic rods and exhibit a beating motion: internally generated stresses give rise to a series of bends that propagate towards the tip. In contrast to this variety of swimming strategies encountered in nature, a controlled swimming motion of artificial micrometre-sized structures has not yet been realized. Here we show that a linear chain of colloidal magnetic particles linked by DNA and attached to a red blood cell can act as a flexible artificial flagellum. The filament aligns with an external uniform magnetic field and is readily actuated by oscillating a transverse field. We find that the actuation induces a beating pattern that propels the structure, and that the external fields can be adjusted to control the velocity and the direction of motion.

摘要

诸如细菌和许多真核细胞等微生物通过被称为鞭毛的毛发状结构推动自身前进,鞭毛可呈现出多种结构和运动模式。例如,细菌鞭毛呈螺旋状,由位于其基部的可逆旋转发动机驱动,该发动机旋转附着的鞭毛,产生类似于螺旋开塞钻的运动。相比之下,真核细胞使用的鞭毛类似弹性杆,并呈现出摆动运动:内部产生的应力会引发一系列向鞭毛尖端传播的弯曲。与自然界中遇到的这种多样的游动策略不同,人工微米级结构的可控游动运动尚未实现。在此我们表明,由DNA连接并附着于红细胞的胶体磁性颗粒线性链可充当柔性人工鞭毛。该细丝与外部均匀磁场对齐,并通过振荡横向磁场很容易地被驱动。我们发现,这种驱动会诱导出推动该结构的摆动模式,并且可以调整外部磁场来控制速度和运动方向。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验