School of Pharmacy, University of Athens, Panepistimiopolis, Athens, 157 71, Greece.
J Pharmacokinet Pharmacodyn. 2009 Dec;36(6):613-28. doi: 10.1007/s10928-009-9141-9. Epub 2009 Nov 20.
We present a Bayesian automated method to reduce by lumping, a large system described by differential equations which takes into account parameter variability. Model reduction is a potentially useful tool to simplify large systems but suffers from lack of robustness over the model parameter values. With the present method we address this problem by incorporating a prior parameter distribution in the determination of the optimal lumping scheme in a Bayesian manner. Applications of this method may include PBPK models for the drug distribution and/or Systems Biology models for the drug action. The method builds on our previously published algorithm for lumping that works stepwise, reducing the system's dimension by one at each step and where each successive step is conditional to the previous ones. We applied the methodology to a PBPK model for barbiturates taken from the literature. An arbitrary variability of 20% CV was added to the nominal reported parameter values. The Bayesian method performed better than the method which ignored the parameter variability, producing a lumping scheme which, while not optimal for any parameter value, was optimal on average. On the other hand the simple, non-Bayesian method produced a lumping scheme which while optimal for the nominal parameter values, was very poor for most other values within the prior distribution. Further, we discuss the generality of a lumping strategy to reduce a model and we argue that this is more powerful than elimination of states, with the latter being almost a special case of lumping.
我们提出了一种贝叶斯自动化方法,通过聚类来减少由微分方程描述的、考虑参数可变性的大型系统。模型简化是简化大型系统的一种潜在有用工具,但在模型参数值方面缺乏稳健性。通过本方法,我们通过以贝叶斯方式将先验参数分布纳入最优聚类方案的确定中,解决了这个问题。这种方法的应用可能包括药物分布的 PBPK 模型和/或药物作用的系统生物学模型。该方法基于我们之前发表的逐步聚类算法,每次减少系统的一个维度,每个后续步骤都依赖于前一个步骤。我们将该方法应用于文献中提取的巴比妥酸盐 PBPK 模型。将名义报告参数值的任意 20%CV 变异性添加到模型中。贝叶斯方法的性能优于忽略参数可变性的方法,产生的聚类方案虽然不是针对任何参数值最优,但平均来说是最优的。另一方面,简单的非贝叶斯方法产生的聚类方案虽然针对名义参数值是最优的,但对于先验分布中的大多数其他值,效果很差。此外,我们还讨论了简化模型的聚类策略的通用性,并认为这比消除状态更有效,后者几乎是聚类的一个特例。