Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada.
J Neurosci. 2009 Nov 25;29(47):14713-25. doi: 10.1523/JNEUROSCI.2660-09.2009.
ATP released during hypoxia from the ventrolateral medulla activates purinergic receptors (P2Rs) to attenuate the secondary hypoxic depression of breathing by a mechanism that likely involves a P2Y(1)R-mediated excitation of preBötzinger complex (preBötC) inspiratory rhythm-generating networks. In this study, we used rhythmically active in vitro preparations from embryonic and postnatal rats and ATP microinjection into the rostral ventral respiratory group (rVRG)/preBötC to reveal that these networks are sensitive to ATP when rhythm emerges at embryonic day 17 (E17). The peak frequency elicited by ATP at E19 and postnatally was the same ( approximately 45 bursts/min), but relative sensitivity was threefold greater at E19, reflecting a lower baseline frequency (5.6 +/- 0.9 vs 19.0 +/- 1.3 bursts/min). Combining microinjection techniques with ATP biosensors revealed that ATP concentration in the rVRG/preBötC falls rapidly as a result of active processes and closely correlates with inspiratory frequency. A phosphate assay established that preBötC-containing tissue punches degrade ATP at rates that increase perinatally. Thus, the agonist profile [ATP/ADP/adenosine (ADO)] produced after ATP release in the rVRG/preBötC will change perinatally. Electrophysiology further established that the ATP metabolite ADP is excitatory and that, in fetal but not postnatal animals, ADO at A(1) receptors exerts a tonic depressive action on rhythm, whereas A(1) antagonists extend the excitatory action of ATP on inspiratory rhythm. These data demonstrate that ATP is a potent excitatory modulator of the rVRG/preBötC inspiratory network from the time it becomes active and that ATP actions are determined by a dynamic interaction between the actions of ATP at P2 receptors, ectonucleotidases that degrade ATP, and ATP metabolites on P2Y and P1 receptors.
缺氧时从延髓腹外侧区释放的 ATP 通过嘌呤能受体 (P2R) 激活,以一种可能涉及 P2Y(1)R 介导的预激复合体 (preBötC) 吸气节律生成网络兴奋的机制来减轻继发性缺氧性呼吸抑制。在这项研究中,我们使用来自胚胎和新生大鼠的节律性活性体外制剂和 ATP 向头侧腹侧呼吸组 (rVRG)/preBötC 内微注射,以揭示这些网络在胚胎第 17 天 (E17) 出现节律时对 ATP 敏感。在 E19 和出生后,ATP 诱发的峰值频率相同 (约 45 次/分钟),但 E19 时相对敏感性高 3 倍,反映出基线频率较低 (5.6 +/- 0.9 比 19.0 +/- 1.3 次/分钟)。将微注射技术与 ATP 生物传感器相结合表明,由于活跃的过程,rVRG/preBötC 中的 ATP 浓度迅速下降,并与吸气频率密切相关。磷酸酯测定表明,含 preBötC 的组织穿孔以随年龄增加的速率降解 ATP。因此,rVRG/preBötC 中 ATP 释放后产生的激动剂谱 [ATP/ADP/腺苷 (ADO)] 将随年龄变化。电生理学进一步证实,ATP 代谢物 ADP 是兴奋性的,并且在胎儿而非新生动物中,A1 受体上的 ADO 对节律产生紧张性抑制作用,而 A1 拮抗剂则延长 ATP 对吸气节律的兴奋作用。这些数据表明,从其开始活跃时起,ATP 就是 rVRG/preBötC 吸气网络的一种强有力的兴奋调节剂,并且 ATP 的作用取决于 P2 受体上 ATP 的作用、降解 ATP 的核苷酸酶以及 P2Y 和 P1 受体上的 ATP 代谢物之间的动态相互作用。