Departments of Physiology and Pediatrics, Centre for Neuroscience, Women and Children’s Health Research Institute (WCHRI), Faculty of Medicineand Dentistry, University of Alberta, Edmonton, Alberta, Canada, T6G 2H7.
J Physiol. 2011 Sep 15;589(Pt 18):4583-600. doi: 10.1113/jphysiol.2011.210930. Epub 2011 Jul 25.
ATP signalling in the CNS is mediated by a three-part system comprising the actions of ATP (and ADP) at P2 receptors (P2Rs), adenosine (ADO) at P1 receptors (P1Rs), and ectonucleotidases that degrade ATP into ADO. ATP excites preBötzinger complex (preBötC) inspiratory rhythm-generating networks where its release attenuates the hypoxic depression of breathing. Its metabolite, ADO, inhibits breathing through unknown mechanisms that may involve the preBötC. Our objective is to understand the dynamics of this signalling system and its influence on preBötC networks. We show that the preBötC of mouse and rat is sensitive to P2Y(1) purinoceptor (P2Y(1)R) activation, responding with a >2-fold increase in frequency. Remarkably, the mouse preBötC is insensitive to ATP. Only after block of A(1) ADORs is the ATP-evoked, P2Y(1)R-mediated frequency increase observed. This demonstrates that ATP is rapidly degraded to ADO, which activates inhibitory A(1)Rs, counteracting the P2Y(1)R-mediated excitation. ADO sensitivity of mouse preBötC was confirmed by a frequency decrease that was absent in rat. Differential ectonucleotidase activities are likely to contribute to the negligible ATP sensitivity of mouse preBötC. Real-time PCR analysis of ectonucleotidase isoforms in preBötC punches revealed TNAP (degrades ATP to ADO) or ENTPDase2 (favours production of excitatory ADP) as the primary constituent in mouse and rat, respectively. These data further establish the sensitivity of this vital network to P2Y(1)R-mediated excitation, emphasizing that individual components of the three-part signalling system dramatically alter network responses to ATP. Data also suggest therapeutic potential may derive from methods that alter the ATP-ADO balance to favour the excitatory actions of ATP.
中枢神经系统中的 ATP 信号转导是由三部分系统介导的,包括 ATP(和 ADP)在 P2 受体(P2R)上的作用、腺苷(ADO)在 P1 受体(P1R)上的作用以及将 ATP 降解为 ADO 的细胞外核苷酸酶。ATP 兴奋 preBötzinger 复合体内吸气节律生成网络,其释放可减轻缺氧对呼吸的抑制。其代谢物 ADO 通过未知机制抑制呼吸,这些机制可能涉及 preBötC。我们的目标是了解该信号转导系统的动力学及其对 preBötC 网络的影响。我们表明,鼠和大鼠的 preBötC 对 P2Y(1)嘌呤能受体(P2Y(1)R)的激活敏感,其频率增加超过 2 倍。值得注意的是,鼠 preBötC 对 ATP 不敏感。只有在阻断 A(1)ADORs 后,才观察到 ATP 诱导的、P2Y(1)R 介导的频率增加。这表明 ATP 迅速降解为 ADO,ADO 激活抑制性 A(1)Rs,抵消 P2Y(1)R 介导的兴奋。通过在大鼠中不存在的频率降低,证实了 ADO 对鼠 preBötC 的敏感性。差异的细胞外核苷酸酶活性可能导致鼠 preBötC 对 ATP 的敏感性微不足道。preBötC 穿孔的细胞外核苷酸酶同工型实时 PCR 分析显示,TNAP(将 ATP 降解为 ADO)或 ENTPDase2(有利于产生兴奋性 ADP)分别是鼠和大鼠的主要成分。这些数据进一步证实了该重要网络对 P2Y(1)R 介导的兴奋的敏感性,强调了三部分信号转导系统的各个组成部分极大地改变了网络对 ATP 的反应。数据还表明,改变 ATP-ADO 平衡以有利于 ATP 的兴奋作用的方法可能具有治疗潜力。