Department of Physics, Federal University of Minas Gerais, Brazil.
Phys Biol. 2009 Nov 26;6(4):046019. doi: 10.1088/1478-3975/6/4/046019.
Several lines of evidence point to the modification of firing patterns and of synchronization due to gap junctions (GJs) as having a role in the establishment of epileptiform activity (EA). However, previous studies consider GJs as ohmic resistors, ignoring the effects of intense variations in ionic concentration known to occur during seizures. In addition to GJs, extracellular potassium is regarded as a further important factor involved in seizure initiation and sustainment. To analyze how these two mechanisms act together to shape firing and synchronization, we use a detailed computational model for in vitro high-K(+) and low-Ca(2+) nonsynaptic EA. The model permits us to explore the modulation of electrotonic interactions under ionic concentration changes caused by electrodiffusion in the extracellular space, altered by tortuosity. In addition, we investigate the special case of null GJ current. Increased electrotonic interaction alters bursts and action potential frequencies, favoring synchronization. The particularities of pattern changes depend on the tortuosity and array size. Extracellular potassium accumulation alone modifies firing and synchronization when the GJ coupling is null.
有几条证据表明,由于缝隙连接(GJ)的存在,放电模式和同步性的改变在癫痫样活动(EA)的形成中起作用。然而,以前的研究认为 GJ 是欧姆电阻器,忽略了在癫痫发作期间发生的离子浓度剧烈变化的影响。除了 GJ 之外,细胞外钾也被认为是参与癫痫发作起始和维持的另一个重要因素。为了分析这两种机制如何共同作用以形成放电和同步,我们使用详细的体外高 K(+)和低 Ca(2+)非突触 EA 的计算模型。该模型使我们能够探索在由细胞外空间中的电扩散引起的离子浓度变化下的电紧张相互作用的调制,而这种变化又受到曲折度的影响。此外,我们还研究了 GJ 电流为零的特殊情况。增加的电紧张相互作用改变了爆发和动作电位的频率,有利于同步。模式变化的特殊性取决于曲折度和阵列大小。当 GJ 连接为零时,细胞外钾积累本身就会改变放电和同步。