Suppr超能文献

受精卵中纺锤体的排列决定了蜗牛的左右不对称发育途径。

Chiral blastomere arrangement dictates zygotic left-right asymmetry pathway in snails.

机构信息

Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan.

出版信息

Nature. 2009 Dec 10;462(7274):790-4. doi: 10.1038/nature08597.

Abstract

Most animals display internal and/or external left-right asymmetry. Several mechanisms for left-right asymmetry determination have been proposed for vertebrates and invertebrates but they are still not well characterized, particularly at the early developmental stage. The gastropods Lymnaea stagnalis and the closely related Lymnaea peregra have both the sinistral (recessive) and the dextral (dominant) snails within a species and the chirality is hereditary, determined by a single locus that functions maternally. Intriguingly, the handedness-determining gene(s) and the mechanisms are not yet identified. Here we show that in L. stagnalis, the chiral blastomere arrangement at the eight-cell stage (but not the two- or four-cell stage) determines the left-right asymmetry throughout the developmental programme, and acts upstream of the Nodal signalling pathway. Thus, we could demonstrate that mechanical micromanipulation of the third cleavage chirality (from the four- to the eight-cell stage) leads to reversal of embryonic handedness. These manipulated embryos grew to 'dextralized' sinistral and 'sinistralized' dextral snails-that is, normal healthy fertile organisms with all the usual left-right asymmetries reversed to that encoded by the mothers' genetic information. Moreover, manipulation reversed the embryonic nodal expression patterns. Using backcrossed F(7) congenic animals, we could demonstrate a strong genetic linkage between the handedness-determining gene(s) and the chiral cytoskeletal dynamics at the third cleavage that promotes the dominant-type blastomere arrangement. These results establish the crucial importance of the maternally determined blastomere arrangement at the eight-cell stage in dictating zygotic signalling pathways in the organismal chiromorphogenesis. Similar chiral blastomere configuration mechanisms may also operate upstream of the Nodal pathway in left-right patterning of deuterostomes/vertebrates.

摘要

大多数动物表现出内部和/或外部的左右不对称性。已经提出了几种用于脊椎动物和无脊椎动物的左右不对称性决定机制,但它们仍然没有很好地描述,尤其是在早期发育阶段。腹足纲软体动物田螺和与之密切相关的田螺都有左旋(隐性)和右旋(显性)蜗牛,并且手性是遗传的,由一个在母体中起作用的单一基因座决定。有趣的是,手性决定基因和机制尚未确定。在这里,我们表明在田螺中,八细胞阶段的手性分裂球排列(而不是二细胞或四细胞阶段)决定了整个发育过程中的左右不对称性,并作用于 Nodal 信号通路的上游。因此,我们可以证明,通过机械微操作第三分裂的手性(从四细胞到八细胞阶段)可以导致胚胎手性的反转。这些被操纵的胚胎发育成“右旋化”的左旋蜗牛和“左旋化”的右旋蜗牛——即具有所有正常左右不对称性的正常健康有生育能力的生物体,其左右不对称性被反转到来自母亲遗传信息的编码。此外,操作还改变了胚胎 nodal 的表达模式。使用回交 F(7)同基因动物,我们可以证明手性决定基因与第三分裂中促进显性分裂球排列的手性细胞骨架动力学之间存在强烈的遗传连锁。这些结果确立了母源性八细胞阶段分裂球排列在手形生物发生中决定合子信号通路的重要性。类似的手性分裂球配置机制也可能在左右模式形成的后口动物/脊椎动物的 Nodal 途径上游起作用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验