Suppr超能文献

软体动物壳螺旋的物理基础。

The physical basis of mollusk shell chiral coiling.

机构信息

Univ Lyon 1, ENSL, UJM, CNRS, LGL-TPE (Laboratoire de Géologie de Lyon: Terre, Planète, Environnement), 69622 Villeurbanne, France;

Mathematical Institute, University of Oxford, Oxford OX2 6GG, United Kingdom.

出版信息

Proc Natl Acad Sci U S A. 2021 Nov 30;118(48). doi: 10.1073/pnas.2109210118.

Abstract

Snails are model organisms for studying the genetic, molecular, and developmental bases of left-right asymmetry in Bilateria. However, the development of their typical helicospiral shell, present for the last 540 million years in environments as different as the abyss or our gardens, remains poorly understood. Conversely, ammonites typically have a bilaterally symmetric, planispiraly coiled shell, with only 1% of 3,000 genera displaying either a helicospiral or a meandering asymmetric shell. A comparative analysis suggests that the development of chiral shells in these mollusks is different and that, unlike snails, ammonites with asymmetric shells probably had a bilaterally symmetric body diagnostic of cephalopods. We propose a mathematical model for the growth of shells, taking into account the physical interaction during development between the soft mollusk body and its hard shell. Our model shows that a growth mismatch between the secreted shell tube and a bilaterally symmetric body in ammonites can generate mechanical forces that are balanced by a twist of the body, breaking shell symmetry. In gastropods, where a twist is intrinsic to the body, the same model predicts that helicospiral shells are the most likely shell forms. Our model explains a large diversity of forms and shows that, although molluscan shells are incrementally secreted at their opening, the path followed by the shell edge and the resulting form are partly governed by the mechanics of the body inside the shell, a perspective that explains many aspects of their development and evolution.

摘要

蜗牛是研究两侧对称动物中左右不对称的遗传、分子和发育基础的模式生物。然而,它们典型的螺旋壳的发育仍然知之甚少,这种螺旋壳在过去的 5.4 亿年中存在于深渊或我们的花园等不同的环境中。相比之下,菊石通常具有双侧对称的平面螺旋壳,只有 3000 个属中的 1%显示出螺旋或蜿蜒的不对称壳。比较分析表明,这些软体动物中手性壳的发育是不同的,与蜗牛不同,具有不对称壳的菊石可能具有双侧对称的身体,这是头足类动物的特征。我们提出了一个用于贝壳生长的数学模型,考虑了在发育过程中软体动物身体和硬壳之间的物理相互作用。我们的模型表明,菊石中分泌的贝壳管与双侧对称身体之间的生长不匹配会产生机械力,这些机械力被身体的扭曲所平衡,从而打破了贝壳的对称性。在腹足类动物中,身体的扭曲是内在的,同样的模型预测螺旋壳是最有可能的贝壳形式。我们的模型解释了大量的形式,并表明,尽管软体动物的贝壳是在开口处逐渐分泌的,但贝壳边缘所遵循的路径和产生的形状部分受到壳内身体力学的控制,这种观点解释了它们发育和进化的许多方面。

相似文献

1
The physical basis of mollusk shell chiral coiling.软体动物壳螺旋的物理基础。
Proc Natl Acad Sci U S A. 2021 Nov 30;118(48). doi: 10.1073/pnas.2109210118.
2
Morphomechanics and Developmental Constraints in the Evolution of Ammonites Shell Form.菊石壳形态演化中的形态力学与发育限制
J Exp Zool B Mol Dev Evol. 2016 Nov;326(7):437-450. doi: 10.1002/jez.b.22716. Epub 2016 Dec 6.
3
Mechanics unlocks the morphogenetic puzzle of interlocking bivalved shells.力学解开了联锁双壳贝类形态发生的谜题。
Proc Natl Acad Sci U S A. 2020 Jan 7;117(1):43-51. doi: 10.1073/pnas.1916520116. Epub 2019 Dec 16.
4
The morpho-mechanical basis of ammonite form.菊石形态的形态力学基础。
J Theor Biol. 2015 Jan 7;364:220-30. doi: 10.1016/j.jtbi.2014.09.021. Epub 2014 Sep 26.
6
Mechanical growth and morphogenesis of seashells.贝壳的机械生长和形态发生。
J Theor Biol. 2012 Oct 21;311:69-79. doi: 10.1016/j.jtbi.2012.07.009. Epub 2012 Jul 20.

引用本文的文献

4
A multiscale computational framework for the development of spines in molluscan shells.一种用于贝类贝壳中刺发展的多尺度计算框架。
PLoS Comput Biol. 2024 Mar 1;20(3):e1011835. doi: 10.1371/journal.pcbi.1011835. eCollection 2024 Mar.
6
Fractal-like geometry as an evolutionary response to predation?分形状几何形态是一种对捕食的进化反应?
Sci Adv. 2023 Jul 28;9(30):eadh0480. doi: 10.1126/sciadv.adh0480. Epub 2023 Jul 26.
7
Ghost in the shell.攻壳机动队
Proc Natl Acad Sci U S A. 2021 Dec 21;118(51). doi: 10.1073/pnas.2118894118.

本文引用的文献

1
Recent advances in heteromorph ammonoid palaeobiology.异形菊石古生物生物学的最新进展。
Biol Rev Camb Philos Soc. 2021 Apr;96(2):576-610. doi: 10.1111/brv.12669. Epub 2021 Jan 13.
4
Shaping Organs: Shared Structural Principles Across Kingdoms.塑造器官:跨王国的共享结构原则
Annu Rev Cell Dev Biol. 2020 Oct 6;36:385-410. doi: 10.1146/annurev-cellbio-012820-103850. Epub 2020 Jul 6.
5
6
Mechanics unlocks the morphogenetic puzzle of interlocking bivalved shells.力学解开了联锁双壳贝类形态发生的谜题。
Proc Natl Acad Sci U S A. 2020 Jan 7;117(1):43-51. doi: 10.1073/pnas.1916520116. Epub 2019 Dec 16.
8
Growth and remodelling of living tissues: perspectives, challenges and opportunities.活组织的生长和重塑:观点、挑战与机遇。
J R Soc Interface. 2019 Aug 30;16(157):20190233. doi: 10.1098/rsif.2019.0233. Epub 2019 Aug 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验