Lin Huazhen, Zhou Xiao-Hua
Department of Mathematics, Sichuan University, Chengdu, Sichuan 610064, People Republic of China.
Biostatistics. 2009 Oct;10(4):640-58. doi: 10.1093/biostatistics/kxp019. Epub 2009 Jun 22.
In longitudinal or hierarchical structure studies, we often encounter a semicontinuous variable that has a certain proportion of a single value and a continuous and skewed distribution among the rest of values. In this paper, we propose a new semiparametric 2-part mixed-effects transformation model to fit correlated skewed semicontinuous data. In our model, we allow the transformation to be nonparametric. Fitting the proposed model faces computational challenges due to intractable numerical integrations. We derive the estimates for the parameter and the transformation function based on an approximate likelihood, which has high-order accuracy but less computational burden. We also propose an estimator for the expected value of the semicontinuous outcome on the original scale. Finally, we apply the proposed methods to a clinical study on effectiveness of a collaborative care treatment on late-life depression on health care costs.
在纵向或分层结构研究中,我们经常遇到一个半连续变量,它有一定比例的单一值,其余值呈连续且偏态分布。在本文中,我们提出了一种新的半参数两部分混合效应变换模型,以拟合相关的偏态半连续数据。在我们的模型中,我们允许变换是非参数的。由于难以处理的数值积分,拟合所提出的模型面临计算挑战。我们基于近似似然推导出参数和变换函数的估计值,该近似似然具有高阶精度但计算负担较小。我们还提出了原始尺度下半连续结果期望值的估计量。最后,我们将所提出的方法应用于一项关于协作护理治疗对晚期抑郁症医疗费用有效性的临床研究。