Suppr超能文献

超高频率(超过 100MHz)无芯 PZT 线性阵列。

Very high frequency (beyond 100 MHz) PZT kerfless linear arrays.

机构信息

NIH Center for Ultrasonic Transducer Technol., Univ. of Southern California, Los Angeles, CA, USA.

出版信息

IEEE Trans Ultrason Ferroelectr Freq Control. 2009 Oct;56(10):2304-10. doi: 10.1109/TUFFC.2009.1311.

Abstract

This paper presents the design, fabrication, and measurements of very high frequency kerfless linear arrays prepared from PZT film and PZT bulk material. A 12-microm PZT thick film fabricated from PZT-5H powder/solution composite and a piece of 15-microm PZT-5H sheet were used to fabricate 32-element kerfless high-frequency linear arrays with photolithography. The PZT thick film was prepared by spin-coating of PZT sol-gel composite solution. The thin PZT-5H sheet sample was prepared by lapping a PZT-5H ceramic with a precision lapping machine. The measured results of the 2 arrays were compared. The PZT film array had a center frequency of 120 MHz, a bandwidth of 60% with a parylene matching layer, and an insertion loss of 41 dB. The PZT ceramic sheet array was found to have a center frequency of 128 MHz with a poorer bandwidth (40% with a parylene matching layer) but a better sensitivity (28 dB insertion loss).

摘要

本文介绍了由 PZT 薄膜和 PZT 块体材料制备的无切缝高频线性阵列的设计、制造和测量。使用由 PZT-5H 粉末/溶液复合材料制成的 12μm PZT 厚膜和 15μm PZT-5H 片制作了 32 个无切缝高频线性阵列,采用光刻技术。PZT 厚膜是通过旋涂 PZT 溶胶-凝胶复合溶液制备的。薄的 PZT-5H 片样品是通过使用精密研磨机研磨 PZT-5H 陶瓷片制备的。比较了这两个阵列的测量结果。PZT 薄膜阵列的中心频率为 120MHz,带宽为 60%,带有聚对二甲苯匹配层,插入损耗为 41dB。发现 PZT 陶瓷片阵列的中心频率为 128MHz,带宽较差(带有聚对二甲苯匹配层时为 40%),但灵敏度较高(插入损耗为 28dB)。

相似文献

1
Very high frequency (beyond 100 MHz) PZT kerfless linear arrays.
IEEE Trans Ultrason Ferroelectr Freq Control. 2009 Oct;56(10):2304-10. doi: 10.1109/TUFFC.2009.1311.
2
Micro-machined high-frequency (80 MHz) PZT thick film linear arrays.
IEEE Trans Ultrason Ferroelectr Freq Control. 2010 Oct;57(10):2213-20. doi: 10.1109/TUFFC.2010.1680.
3
High-frequency (>50 MHz) medical ultrasound linear arrays fabricated from micromachined bulk PZT materials.
IEEE Trans Ultrason Ferroelectr Freq Control. 2012 Feb;59(2):315-8. doi: 10.1109/TUFFC.2012.2193.
4
PMN-PT single-crystal high-frequency kerfless phased array.
IEEE Trans Ultrason Ferroelectr Freq Control. 2014 Jun;61(6):1033-41. doi: 10.1109/TUFFC.2014.2999.
5
25 MHz ultrasonic transducers with lead-free piezoceramic, 1-3 PZT fiber-epoxy composite, and PVDF polymer active elements.
IEEE Trans Ultrason Ferroelectr Freq Control. 2009 Feb;56(2):368-78. doi: 10.1109/TUFFC.2009.1046.
6
New fabrication of high-frequency (100-MHz) ultrasound PZT film kerfless linear array.
IEEE Trans Ultrason Ferroelectr Freq Control. 2013 Apr;60(4):854-7. doi: 10.1109/TUFFC.2013.2635.
7
Fabrication and characterization of piezoelectric micromachined ultrasonic transducers with thick composite PZT films.
IEEE Trans Ultrason Ferroelectr Freq Control. 2005 Dec;52(12):2289-97. doi: 10.1109/tuffc.2005.1563271.
9
Ultrasonic array of thick film transducers for biological tissue characterization.
Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:186-9. doi: 10.1109/IEMBS.2010.5627915.
10
Multi-layered PZT/polymer composites to increase signal-to-noise ratio and resolution for medical ultrasound transducers part II: thick film technology.
IEEE Trans Ultrason Ferroelectr Freq Control. 2002 Jul;49(7):1005-14. doi: 10.1109/tuffc.2002.1020171.

引用本文的文献

2
Emerging Wearable Ultrasound Technology.
IEEE Trans Ultrason Ferroelectr Freq Control. 2024 Jul;71(7):713-729. doi: 10.1109/TUFFC.2023.3327143. Epub 2024 Jul 9.
3
Power Amplifier Design for Ultrasound Applications.
Micromachines (Basel). 2023 Jun 30;14(7):1342. doi: 10.3390/mi14071342.
4
Dual-Resonance (16/32 MHz) Piezoelectric Transducer With a Single Electrical Connection for Forward-Viewing Robotic Guidewire.
IEEE Trans Ultrason Ferroelectr Freq Control. 2022 Apr;69(4):1428-1441. doi: 10.1109/TUFFC.2022.3150746. Epub 2022 Mar 30.
6
Analysis and Design of High-Frequency 1-D CMUT Imaging Arrays in Noncollapsed Mode.
IEEE Trans Ultrason Ferroelectr Freq Control. 2019 Feb;66(2):382-393. doi: 10.1109/TUFFC.2018.2887043. Epub 2018 Dec 17.
7
Acoustic devices for particle and cell manipulation and sensing.
Sensors (Basel). 2014 Aug 13;14(8):14806-38. doi: 10.3390/s140814806.
8
Relaxor-based ferroelectric single crystals: growth, domain engineering, characterization and applications.
Prog Mater Sci. 2014 Aug 1;65:124-210. doi: 10.1016/j.pmatsci.2014.03.006.
9
PMN-PT single-crystal high-frequency kerfless phased array.
IEEE Trans Ultrason Ferroelectr Freq Control. 2014 Jun;61(6):1033-41. doi: 10.1109/TUFFC.2014.2999.
10
New fabrication of high-frequency (100-MHz) ultrasound PZT film kerfless linear array.
IEEE Trans Ultrason Ferroelectr Freq Control. 2013 Apr;60(4):854-7. doi: 10.1109/TUFFC.2013.2635.

本文引用的文献

1
Fabrication and characterization of annular thickness mode piezoelectric micro ultrasonic transducers.
IEEE Trans Ultrason Ferroelectr Freq Control. 2007 Dec;54(12):2462-8. doi: 10.1109/TUFFC.2007.560.
2
High frequency piezoelectric MEMS ultrasound transducers.
IEEE Trans Ultrason Ferroelectr Freq Control. 2007 Dec;54(12):2422-30. doi: 10.1109/TUFFC.2007.555.
3
Single element high frequency (<50 MHz) PZT sol gel composite ultrasound transducers.
IEEE Trans Ultrason Ferroelectr Freq Control. 2000;47(1):148-59. doi: 10.1109/58.818757.
4
Fabrication of PZT sol gel composite ultrasonic transducers using batch fabrication micromolding.
IEEE Trans Ultrason Ferroelectr Freq Control. 2006 Sep;53(9):1679-84. doi: 10.1109/tuffc.2006.1678196.
5
Investigation of cross talk in Kerfless annular arrays for high-frequency imaging.
IEEE Trans Ultrason Ferroelectr Freq Control. 2006 May;53(5):1046-56. doi: 10.1109/tuffc.2006.1632694.
6
Fabrication and characterization of micromachined high-frequency tonpilz transducers derived by PZT thick films.
IEEE Trans Ultrason Ferroelectr Freq Control. 2005 Mar;52(3):350-7. doi: 10.1109/tuffc.2005.1417256.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验