Suppr超能文献

基于同调 K 分布的改进参数估计。

Improved parameter estimates based on the homodyned K distribution.

机构信息

Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.

出版信息

IEEE Trans Ultrason Ferroelectr Freq Control. 2009 Nov;56(11):2471-81. doi: 10.1109/TUFFC.2009.1334.

Abstract

Quantitative techniques based on ultrasound backscatter are promising tools for ultrasonic tissue characterization. There is a need for fast and accurate processing strategies to obtain consistent estimates. An improved parameter estimation algorithm for the homodyned K distribution was developed based on SNR, skewness, and kurtosis of fractional- order moments. From the homodyned K distribution, estimates of the number of scatterers per resolution cell (micro parameter) and estimates of the ratio of coherent to incoherent backscatter signal energy (k parameter) were obtained. Furthermore, angular compounding was used to reduce estimate variance while maintaining spatial resolution of subsequent parameter images. Estimate bias and variance from Monte Carlo simulations were used to quantify the improvement using the new estimation algorithm compared with existing techniques. Improvements due to angular compounding were quantified by the decrease in estimate variance in both simulations and measurements from tissue-mimicking phantoms and by the increase in target contrast. Finally, the new algorithm was used to derive estimates from 2 kinds of mouse mammary tumors for tissue characterization. The new estimation algorithm yielded estimates with lower bias and variance than existing techniques. For a typical pair of parameters (micro = 5 and k = 1), the bias and variance were reduced 67% and 16%, respectively, for the mu parameter estimates and 79% and 37%, respectively, for the k parameter estimates. The use of angular compounding further reduced the estimate variance, e.g., the variance of estimates for the micro parameter from measurements was reduced by a factor of approximately 90 when using 120 angles of view. Finally, statistically significant differences were observed in parameter estimates from 2 kinds of mouse mammary tumors using the new algorithm. These improvements suggest estimating parameters from the backscattered envelope can enhance the diagnostic capabilities of ultrasonic imaging.

摘要

基于超声背散射的定量技术是超声组织特征化的有前途的工具。需要快速准确的处理策略来获得一致的估计。基于分数阶矩的信噪比、偏度和峰度,提出了一种改进的同态 K 分布参数估计算法。从同态 K 分布中,获得了每个分辨率单元(微观参数)的散射体数量估计值和相干与非相干背散射信号能量比(k 参数)的估计值。此外,使用角度复用来降低估计方差,同时保持后续参数图像的空间分辨率。使用蒙特卡罗模拟的估计偏差和方差来量化新估计算法与现有技术相比的改进。通过在组织模拟体模的模拟和测量中降低估计方差以及增加目标对比度,来量化角度复用时的改进。最后,使用新算法从 2 种小鼠乳腺肿瘤中得出组织特征化的估计值。新的估计算法产生的估计值具有比现有技术更低的偏差和方差。对于一对典型参数(微观= 5 和 k = 1),mu 参数估计的偏差和方差分别降低了 67%和 16%,k 参数估计的偏差和方差分别降低了 79%和 37%。角度复用时,进一步降低了估计方差,例如,使用 120 个视角时,来自测量的微观参数估计值的方差降低了约 90 倍。最后,使用新算法观察到 2 种小鼠乳腺肿瘤的参数估计值存在统计学显著差异。这些改进表明,从背散射包络中估计参数可以增强超声成像的诊断能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验