Computational Radiology Laboratory, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
Med Image Anal. 2013 Apr;17(3):325-36. doi: 10.1016/j.media.2012.12.001. Epub 2013 Jan 3.
Diffusion-weighted MRI has the potential to provide important new insights into physiological and microstructural properties of the body. The Intra-Voxel Incoherent Motion (IVIM) model relates the observed DW-MRI signal decay to parameters that reflect blood flow in the capillaries (D*), capillaries volume fraction (f), and diffusivity (D). However, the commonly used, independent voxel-wise fitting of the IVIM model leads to imprecise parameter estimates, which has hampered their practical usage. In this work, we improve the precision of estimates by introducing a spatially-constrained Incoherent Motion (IM) model of DW-MRI signal decay. We also introduce an efficient iterative "fusion bootstrap moves" (FBM) solver that enables precise parameter estimates with this new IM model. This solver updates parameter estimates by applying a binary graph-cut solver to fuse the current estimate of parameter values with a new proposal of the parameter values into a new estimate of parameter values that better fits the observed DW-MRI data. The proposals of parameter values are sampled from the independent voxel-wise distributions of the parameter values with a model-based bootstrap resampling of the residuals. We assessed both the improvement in the precision of the incoherent motion parameter estimates and the characterization of heterogeneous tumor environments by analyzing simulated and in vivo abdominal DW-MRI data of 30 patients, and in vivo DW-MRI data of three patients with musculoskeletal lesions. We found our IM-FBM reduces the relative root mean square error of the D* parameter estimates by 80%, and of the f and D parameter estimates by 50% compared to the IVIM model with the simulated data. Similarly, we observed that our IM-FBM method significantly reduces the coefficient of variation of parameter estimates of the D* parameter by 43%, the f parameter by 37%, and the D parameter by 17% compared to the IVIM model (paired Student's t-test, p<0.0001). In addition, we found our IM-FBM method improved the characterization of heterogeneous musculoskeletal lesions by means of increased contrast-to-noise ratio of 19.3%. The IM model and FBM solver combined, provide more precise estimate of the physiological model parameter values that describing the DW-MRI signal decay and a better mechanism for characterizing heterogeneous lesions than does the independent voxel-wise IVIM model.
扩散加权磁共振成像有可能为人体的生理和微观结构特性提供重要的新见解。体素内不相干运动(IVIM)模型将观察到的 DW-MRI 信号衰减与反映毛细血管中血流的参数(D*)、毛细血管体积分数(f)和扩散系数(D)相关联。然而,IVIM 模型的常用独立体素拟合导致参数估计不精确,从而阻碍了其实际应用。在这项工作中,我们通过引入 DW-MRI 信号衰减的空间约束不相干运动(IM)模型来提高估计的精度。我们还引入了一种高效的迭代“融合引导移动”(FBM)求解器,该求解器可以使用新的 IM 模型精确估计参数。该求解器通过应用二进制图割求解器将当前参数值的估计与新的参数值的提议融合到更好地拟合观察到的 DW-MRI 数据的新参数值的估计中来更新参数值。参数值的提议是从参数值的独立体素分布中采样的,使用基于模型的残差引导重采样。我们通过分析 30 名患者的模拟和体内腹部 DW-MRI 数据以及 3 名患有肌肉骨骼病变的患者的体内 DW-MRI 数据,评估了不相干运动参数估计精度的提高和异质肿瘤环境的描述。我们发现,与模拟数据的 IVIM 模型相比,我们的 IM-FBM 将 D参数估计的相对均方根误差降低了 80%,将 f 和 D 参数估计的相对均方根误差降低了 50%。同样,我们观察到,与 IVIM 模型相比,我们的 IM-FBM 方法将 D参数估计的变异系数降低了 43%,f 参数降低了 37%,D 参数降低了 17%(配对学生 t 检验,p<0.0001)。此外,我们发现,我们的 IM-FBM 方法通过增加 19.3%的对比度噪声比来改善异质肌肉骨骼病变的特征描述。与独立体素 IVIM 模型相比,IM 模型和 FBM 求解器的组合可以提供更精确的描述 DW-MRI 信号衰减的生理模型参数值的估计,并为描述异质病变提供更好的机制。