Dynamique des Structures et Interactions des Macromolécules Biologiques, UMR 665 INSERM-Université Paris Diderot, Sorbonne Paris Cité, Institut National de la Transfusion Sanguine, Paris, France.
PLoS One. 2012;7(7):e41704. doi: 10.1371/journal.pone.0041704. Epub 2012 Jul 23.
This study investigates the effect of Mg(2+) bound to the DNA major groove on DNA structure and dynamics. The analysis of a comprehensive dataset of B-DNA crystallographic structures shows that divalent cations are preferentially located in the DNA major groove where they interact with successive bases of (A/G)pG and the phosphate group of 5'-CpA or TpG. Based on this knowledge, molecular dynamics simulations were carried out on a DNA oligomer without or with Mg(2+) close to an ApG step. These simulations showed that the hydrated Mg(2+) forms a stable intra-strand cross-link between the two purines in solution. ApG generates an electrostatic potential in the major groove that is particularly attractive for cations; its intrinsic conformation is well-adapted to the formation of water-mediated hydrogen bonds with Mg(2+). The binding of Mg(2+) modulates the behavior of the 5'-neighboring step by increasing the BII (ε-ζ>0°) population of its phosphate group. Additional electrostatic interactions between the 5'-phosphate group and Mg(2+) strengthen both the DNA-cation binding and the BII character of the 5'-step. Cation binding in the major groove may therefore locally influence the DNA conformational landscape, suggesting a possible avenue for better understanding how strong DNA distortions can be stabilized in protein-DNA complexes.
本研究探讨了与 DNA 大沟结合的 Mg(2+) 对 DNA 结构和动力学的影响。对大量 B-DNA 晶体结构数据集的分析表明,二价阳离子优先位于 DNA 大沟中,与 (A/G)pG 的连续碱基以及 5'-CpA 或 TpG 的磷酸基团相互作用。基于这一知识,对不含或含靠近 ApG 步的 Mg(2+) 的 DNA 寡聚物进行了分子动力学模拟。这些模拟表明,水合的 Mg(2+) 在溶液中形成了两个嘌呤之间的稳定的链内交联。ApG 在大沟中产生了特别吸引阳离子的静电势;其固有构象非常适合与 Mg(2+) 形成水介导的氢键。Mg(2+) 的结合通过增加其磷酸基团的 BII(ε-ζ>0°)群体来调节其 5'-相邻步的行为。5'-磷酸基团与 Mg(2+) 之间的额外静电相互作用增强了 DNA-阳离子的结合和 5'-步的 BII 特征。因此,大沟中的阳离子结合可能会局部影响 DNA 构象景观,这表明可能有一条途径可以更好地理解如何稳定蛋白质-DNA 复合物中的强 DNA 扭曲。