Suppr超能文献

学习中获得的相位多巴胺反应的神经机制。

Neural mechanisms of acquired phasic dopamine responses in learning.

机构信息

Department of Psychology and Neuroscience, University of Colorado Boulder, 345 UCB, Boulder, CO 80309, United States.

出版信息

Neurosci Biobehav Rev. 2010 Apr;34(5):701-20. doi: 10.1016/j.neubiorev.2009.11.019. Epub 2009 Nov 26.

Abstract

What biological mechanisms underlie the reward-predictive firing properties of midbrain dopaminergic neurons, and how do they relate to the complex constellation of empirical findings understood as Pavlovian and instrumental conditioning? We previously presented PVLV, a biologically inspired Pavlovian learning algorithm accounting for DA activity in terms of two interrelated systems: a primary value (PV) system, which governs how DA cells respond to a US (reward) and; a learned value (LV) system, which governs how DA cells respond to a CS. Here, we provide a more extensive review of the biological mechanisms supporting phasic DA firing and their relation to the spate of Pavlovian conditioning phenomena and their sensitivity to focal brain lesions. We further extend the model by incorporating a new NV (novelty value) component reflecting the ability of novel stimuli to trigger phasic DA firing, providing "novelty bonuses" which encourages exploratory working memory updating and in turn speeds learning in trace conditioning and other working memory-dependent paradigms. The evolving PVLV model builds upon insights developed in many earlier computational models, especially reinforcement learning models based on the ideas of Sutton and Barto, biological models, and the psychological model developed by Savastano and Miller. The PVLV framework synthesizes these various approaches, overcoming important shortcomings of each by providing a coherent and specific mapping to much of the relevant empirical data at both the micro- and macro-levels, and examines their relevance for higher order cognitive functions.

摘要

中脑多巴胺能神经元的奖赏预测发射特性的生物学机制是什么,它们与作为经典条件作用和工具条件作用的复杂经验发现有何关系?我们之前提出了 PVLV,这是一种受生物启发的经典条件作用学习算法,根据两个相互关联的系统来解释 DA 活动:一个是主要价值(PV)系统,它决定了 DA 细胞对 US(奖励)的反应方式;另一个是习得价值(LV)系统,它决定了 DA 细胞对 CS 的反应方式。在这里,我们更全面地回顾了支持相位 DA 发射的生物学机制及其与大量经典条件作用现象的关系,以及它们对焦点脑损伤的敏感性。我们通过引入一个新的 NV(新颖价值)组件进一步扩展了该模型,该组件反映了新刺激触发相位 DA 发射的能力,提供了“新颖性奖励”,鼓励探索性工作记忆更新,从而加快痕迹条件作用和其他依赖工作记忆的范式中的学习。不断发展的 PVLV 模型建立在许多早期计算模型的见解之上,特别是基于 Sutton 和 Barto 的强化学习模型、生物模型以及 Savastano 和 Miller 开发的心理模型。PVLV 框架综合了这些不同的方法,通过为微观和宏观层面的大量相关经验数据提供一致和具体的映射,克服了每种方法的重要缺点,并考察了它们对更高阶认知功能的相关性。

相似文献

1
Neural mechanisms of acquired phasic dopamine responses in learning.学习中获得的相位多巴胺反应的神经机制。
Neurosci Biobehav Rev. 2010 Apr;34(5):701-20. doi: 10.1016/j.neubiorev.2009.11.019. Epub 2009 Nov 26.
3
A systems-neuroscience model of phasic dopamine.相位多巴胺的系统神经科学模型。
Psychol Rev. 2020 Nov;127(6):972-1021. doi: 10.1037/rev0000199. Epub 2020 Jun 11.
9
Alternative time representation in dopamine models.多巴胺模型中的交替时间表示。
J Comput Neurosci. 2010 Feb;28(1):107-30. doi: 10.1007/s10827-009-0191-1. Epub 2009 Oct 22.

引用本文的文献

1
Therapeutic ketogenic diet as treatment for anorexia nervosa.治疗性生酮饮食作为神经性厌食症的治疗方法。
Front Nutr. 2024 Sep 4;11:1392135. doi: 10.3389/fnut.2024.1392135. eCollection 2024.
2
Human Substantia Nigra Neurons Encode Reward Expectations.人类黑质神经元编码奖励预期。
bioRxiv. 2024 May 11:2024.05.10.593406. doi: 10.1101/2024.05.10.593406.
6
A systems-neuroscience model of phasic dopamine.相位多巴胺的系统神经科学模型。
Psychol Rev. 2020 Nov;127(6):972-1021. doi: 10.1037/rev0000199. Epub 2020 Jun 11.
7
Unraveling the Mysteries of Motivation.揭开动机的神秘面纱。
Trends Cogn Sci. 2020 Jun;24(6):425-434. doi: 10.1016/j.tics.2020.03.001. Epub 2020 Apr 3.

本文引用的文献

2
Time as content in Pavlovian conditioning.作为经典条件作用中内容的时间。
Behav Processes. 1998 Dec;44(2):147-62. doi: 10.1016/s0376-6357(98)00046-1.
3
8
Understanding risk: a guide for the perplexed.理解风险:给困惑者的指南。
Cogn Affect Behav Neurosci. 2008 Dec;8(4):348-54. doi: 10.3758/CABN.8.4.348.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验