Endres Dominik, Oram Mike
School of Psychology, University of St. Andrews, St. Andrews, KY16 9JP, UK.
J Comput Neurosci. 2010 Aug;29(1-2):149-169. doi: 10.1007/s10827-009-0157-3. Epub 2009 May 16.
The peristimulus time histogram (PSTH) and its more continuous cousin, the spike density function (SDF) are staples in the analytic toolkit of neurophysiologists. The former is usually obtained by binning spike trains, whereas the standard method for the latter is smoothing with a Gaussian kernel. Selection of a bin width or a kernel size is often done in an relatively arbitrary fashion, even though there have been recent attempts to remedy this situation (DiMatteo et al., Biometrika 88(4):1055-1071, 2001; Shimazaki and Shinomoto 2007a, Neural Comput 19(6):1503-1527, 2007b, c; Cunningham et al. 2008). We develop an exact Bayesian, generative model approach to estimating PSTHs. Advantages of our scheme include automatic complexity control and error bars on its predictions. We show how to perform feature extraction on spike trains in a principled way, exemplified through latency and firing rate posterior distribution evaluations on repeated and single trial data. We also demonstrate using both simulated and real neuronal data that our approach provides a more accurate estimates of the PSTH and the latency than current competing methods. We employ the posterior distributions for an information theoretic analysis of the neural code comprised of latency and firing rate of neurons in high-level visual area STSa. A software implementation of our method is available at the machine learning open source software repository ( www.mloss.org , project 'binsdfc').
刺激时间直方图(PSTH)及其更具连续性的同类方法——脉冲密度函数(SDF),是神经生理学家分析工具包中的常用方法。前者通常通过对脉冲序列进行分箱获得,而后者的标准方法是用高斯核进行平滑处理。尽管最近有人试图纠正这种情况(迪马特奥等人,《生物统计学》88(4):1055 - 1071,2001;岛崎和筱本2007a,《神经计算》19(6):1503 - 1527,2007b,c;坎宁安等人,2008),但箱宽或核大小的选择通常还是以相对随意的方式进行。我们开发了一种精确的贝叶斯生成模型方法来估计PSTH。我们方案的优点包括自动复杂度控制及其预测上的误差条。我们展示了如何以一种有原则的方式对脉冲序列进行特征提取,通过对重复试验和单次试验数据的潜伏期和放电率后验分布评估来举例说明。我们还使用模拟和真实神经元数据证明,与当前的竞争方法相比,我们的方法能提供更准确的PSTH和潜伏期估计。我们利用后验分布对由高级视觉区域STSa中神经元的潜伏期和放电率组成的神经编码进行信息理论分析。我们方法的软件实现可在机器学习开源软件库(www.mloss.org,项目“binsdfc”)获取。