Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand.
PLoS One. 2013 Aug 14;8(8):e72103. doi: 10.1371/journal.pone.0072103. eCollection 2013.
We develop a new regression algorithm, cMIKANA, for inference of gene regulatory networks from combinations of steady-state and time-series gene expression data. Using simulated gene expression datasets to assess the accuracy of reconstructing gene regulatory networks, we show that steady-state and time-series data sets can successfully be combined to identify gene regulatory interactions using the new algorithm. Inferring gene networks from combined data sets was found to be advantageous when using noisy measurements collected with either lower sampling rates or a limited number of experimental replicates. We illustrate our method by applying it to a microarray gene expression dataset from human umbilical vein endothelial cells (HUVECs) which combines time series data from treatment with growth factor TNF and steady state data from siRNA knockdown treatments. Our results suggest that the combination of steady-state and time-series datasets may provide better prediction of RNA-to-RNA interactions, and may also reveal biological features that cannot be identified from dynamic or steady state information alone. Finally, we consider the experimental design of genomics experiments for gene regulatory network inference and show that network inference can be improved by incorporating steady-state measurements with time-series data.
我们开发了一种新的回归算法 cMIKANA,用于从稳态和时间序列基因表达数据的组合中推断基因调控网络。使用模拟的基因表达数据集来评估重建基因调控网络的准确性,我们表明可以成功地使用新算法结合稳态和时间序列数据集来识别基因调控相互作用。当使用较低的采样率或有限数量的实验重复收集噪声测量值时,从组合数据集推断基因网络被发现是有利的。我们通过将其应用于来自人脐静脉内皮细胞(HUVEC)的微阵列基因表达数据集来说明我们的方法,该数据集结合了生长因子 TNF 处理的时间序列数据和 siRNA 敲低处理的稳态数据。我们的结果表明,稳态和时间序列数据集的组合可能提供更好的 RNA-RNA 相互作用预测,并且还可能揭示仅从动态或稳态信息无法识别的生物学特征。最后,我们考虑用于基因调控网络推断的基因组学实验的实验设计,并表明通过将稳态测量值与时间序列数据结合可以改善网络推断。