Suppr超能文献

通用蛋氨酸 salvage 途径从 5'-甲基硫代腺苷中回收蛋氨酸的代谢特征和重要性。

Metabolic characteristics and importance of the universal methionine salvage pathway recycling methionine from 5'-methylthioadenosine.

机构信息

Department of Chemical and Biological Engineering, Industrial Biotechnology, Chalmers University of Technology, Göteborg, Sweden.

出版信息

IUBMB Life. 2009 Dec;61(12):1132-42. doi: 10.1002/iub.278.

Abstract

The methionine salvage pathway, also called the 5'-methylthioadenosine (MTA) cycle, recycles the sulfur of MTA, which is a by-product in the biosyntheses of polyamine and the plant hormone ethylene. MTA is first converted to 5'-methylthioribose-1-phosphate either by MTA phosphorylase or the combined action of MTA nucleosidase and 5'-methylthioribose kinase. Subsequently, five additional enzymatic steps, catalyzed by four or five proteins, will form 4-methylthio-2-oxobutyrate, the deaminated form of methionine. The final transamination is achieved by transaminases active in the amino acid biosynthesis. This pathway is present with some variations in all types of organisms and seems to be designed for a quick removal of MTA achieved by high affinities of the first enzymes. During evolution some enzymes have attained additional functions, like a proposed role in nuclear mRNA processing by the aci-reductone dioxygenase. For others the function seems to be lost due to conditions in specific ecological niches, such as, presence of sulfur and/or absence of oxygen resulting in that, for example, Escherichia coli is lacking a functional pathway. The pathway is regulated as response to sulfur availability and take part in the regulation of polyamine synthesis. Some of the enzymes in the pathway show separate specificities in different organisms and some others are unique for groups of bacteria and parasites. Thus, promising targets for antimicrobial agents have been identified. Other medical topics to which this pathway has connections are cancer, apoptosis, and inflammatory response.

摘要

甲硫氨酸补救途径,也称为 5'-甲基硫腺苷(MTA)循环,可回收 MTA 的硫,MTA 是多胺和植物激素乙烯生物合成的副产物。MTA 首先被 MTA 磷酸化酶或 MTA 核苷酶和 5'-甲基硫代核糖激酶的联合作用转化为 5'-甲基硫代核糖-1-磷酸。随后,通过四种或五种蛋白质催化的五个额外酶步骤,将形成 4-甲基硫代-2-氧代丁酸,即甲硫氨酸脱氨基形式。最后通过在氨基酸生物合成中活跃的转氨酶实现转氨基。该途径在所有类型的生物体中都存在一些变化,似乎是为了快速去除 MTA,这是通过第一酶的高亲和力实现的。在进化过程中,一些酶获得了额外的功能,例如,在核 mRNA 处理中被提议的 aci-还原酮双加氧酶的作用。对于其他酶,由于特定生态位的条件,其功能似乎已经丧失,例如,由于存在硫和/或缺乏氧气,导致例如大肠杆菌缺乏功能性途径。该途径作为对硫可用性的响应进行调节,并参与多胺合成的调节。该途径中的一些酶在不同的生物体中表现出不同的特异性,而其他一些酶则是细菌和寄生虫群体所特有的。因此,已经确定了有希望的抗菌剂靶标。该途径还与癌症、细胞凋亡和炎症反应等其他医学主题有关。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验