Suppr超能文献

微生物途径用于厌氧 5'-甲基硫腺苷代谢与乙烯形成偶联。

Microbial pathway for anaerobic 5'-methylthioadenosine metabolism coupled to ethylene formation.

机构信息

Department of Microbiology, The Ohio State University, Columbus, OH 43210.

Department of Microbiology, The Ohio State University, Columbus, OH 43210

出版信息

Proc Natl Acad Sci U S A. 2017 Nov 28;114(48):E10455-E10464. doi: 10.1073/pnas.1711625114. Epub 2017 Nov 13.

Abstract

Numerous cellular processes involving -adenosyl-l-methionine result in the formation of the toxic by-product, 5'-methylthioadenosine (MTA). To prevent inhibitory MTA accumulation and retain biologically available sulfur, most organisms possess the "universal" methionine salvage pathway (MSP). However, the universal MSP is inherently aerobic due to a requirement of molecular oxygen for one of the key enzymes. Here, we report the presence of an exclusively anaerobic MSP that couples MTA metabolism to ethylene formation in the phototrophic bacteria and In vivo metabolite analysis of gene deletion strains demonstrated that this anaerobic MSP functions via sequential action of MTA phosphorylase (MtnP), 5-(methylthio)ribose-1-phosphate isomerase (MtnA), and an annotated class II aldolase-like protein (Ald2) to form 2-(methylthio)acetaldehyde as an intermediate. 2-(Methylthio)acetaldehyde is reduced to 2-(methylthio)ethanol, which is further metabolized as a usable organic sulfur source, generating stoichiometric amounts of ethylene in the process. Ethylene induction experiments using 2-(methylthio)ethanol versus sulfate as sulfur sources further indicate anaerobic ethylene production from 2-(methylthio)ethanol requires protein synthesis and that this process is regulated. Finally, phylogenetic analysis reveals that the genes corresponding to these enzymes, and presumably the pathway, are widespread among anaerobic and facultatively anaerobic bacteria from soil and freshwater environments. These results not only establish the existence of a functional, exclusively anaerobic MSP, but they also suggest a possible route by which ethylene is produced by microbes in anoxic environments.

摘要

涉及 - 腺嘌呤基 -L- 甲硫氨酸的许多细胞过程会导致有毒副产物 5'-甲基硫代腺苷(MTA)的形成。为了防止抑制性 MTA 积累并保留生物可用的硫,大多数生物体都具有“通用”蛋氨酸补救途径(MSP)。然而,由于关键酶之一需要分子氧,通用 MSP 本质上是需氧的。在这里,我们报告了一种专门的厌氧 MSP 的存在,它将 MTA 代谢与 和 中的乙烯形成相耦合。对基因缺失菌株的体内代谢物分析表明,这种厌氧 MSP 通过 MTA 磷酸酶(MtnP)、5-(甲基硫代)核糖-1-磷酸异构酶(MtnA)和注释的 II 类醛缩酶样蛋白(Ald2)的顺序作用发挥作用,形成 2-(甲基硫代)乙醛作为中间产物。2-(甲基硫代)乙醛被还原为 2-(甲基硫代)乙醇,后者进一步作为可用的有机硫源代谢,在此过程中产生当量的乙烯。使用 2-(甲基硫代)乙醇与硫酸盐作为硫源进行的乙烯诱导实验进一步表明,2-(甲基硫代)乙醇厌氧产生乙烯需要蛋白质合成,并且该过程受到调节。最后,系统发育分析表明,这些酶对应的基因,以及可能的途径,在土壤和淡水环境中的厌氧和兼性厌氧细菌中广泛存在。这些结果不仅确立了功能齐全的、专门的厌氧 MSP 的存在,而且还表明了微生物在缺氧环境中产生乙烯的可能途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d964/5715764/abbc8523174a/pnas.1711625114fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验