CALIPHO Group, SIB-Swiss Institute of Bioinformatics, University of Geneva, Geneva, Switzerland.
PLoS One. 2012;7(12):e52877. doi: 10.1371/journal.pone.0052877. Epub 2012 Dec 28.
The methionine salvage pathway is widely distributed among some eubacteria, yeast, plants and animals and recycles the sulfur-containing metabolite 5-methylthioadenosine (MTA) to methionine. In eukaryotic cells, the methionine salvage pathway takes place in the cytosol and usually involves six enzymatic activities: MTA phosphorylase (MTAP, EC 2.4.2.28), 5'-methylthioribose-1-phosphate isomerase (mtnA, EC 5.3.1.23), 5'-methylthioribulose-1-phosphate dehydratase (mtnB, EC: 4.2.1.109), 2,3-dioxomethiopentane-1-phosphate enolase/phosphatase (mtnC, EC 3.1.3.77), aci-reductone dioxygenase (mtnD, EC 1.13.11.54) and 4-methylthio-2-oxo-butanoate (MTOB) transaminase (EC 2.6.1.-). The aim of this study was to complete the available information on the methionine salvage pathway in human by identifying the enzyme responsible for the dehydratase step. Using a bioinformatics approach, we propose that a protein called APIP could perform this role. The involvement of this protein in the methionine salvage pathway was investigated directly in HeLa cells by transient and stable short hairpin RNA interference. We show that APIP depletion specifically impaired the capacity of cells to grow in media where methionine is replaced by MTA. Using a Shigella mutant auxotroph for methionine, we confirm that the knockdown of APIP specifically affects the recycling of methionine. We also show that mutation of three potential phosphorylation sites does not affect APIP activity whereas mutation of the potential zinc binding site completely abrogates it. Finally, we show that the N-terminal region of APIP that is missing in the short isoform is required for activity. Together, these results confirm the involvement of APIP in the methionine salvage pathway, which plays a key role in many biological functions like cancer, apoptosis, microbial proliferation and inflammation.
甲硫氨酸补救途径广泛分布于一些真细菌、酵母、植物和动物中,可将含硫代谢物 5-甲基硫腺苷(MTA)再循环为甲硫氨酸。在真核细胞中,甲硫氨酸补救途径发生在细胞质中,通常涉及六种酶活性:MTA 磷酸酶(MTAP,EC 2.4.2.28)、5'-甲基硫代核糖-1-磷酸异构酶(mtnA,EC 5.3.1.23)、5'-甲基硫代核糖-1-磷酸脱水酶(mtnB,EC:4.2.1.109)、2,3-二氧代甲硫戊烷-1-磷酸烯醇酶/磷酸酶(mtnC,EC 3.1.3.77)、aci-还原酮双加氧酶(mtnD,EC 1.13.11.54)和 4-甲基硫代-2-氧代丁酸(MTOB)转氨酶(EC 2.6.1.-)。本研究旨在通过鉴定负责脱水酶步骤的酶,完成人类甲硫氨酸补救途径的现有信息。使用生物信息学方法,我们提出一种名为 APIP 的蛋白质可能具有这种作用。通过瞬时和稳定短发夹 RNA 干扰,直接在 HeLa 细胞中研究该蛋白在甲硫氨酸补救途径中的参与情况。我们表明,APIP 耗尽特异性损害了细胞在以 MTA 替代甲硫氨酸的培养基中生长的能力。使用 Shigella 突变体营养缺陷型甲硫氨酸,我们证实 APIP 的敲低特异性影响了甲硫氨酸的循环利用。我们还表明,三个潜在磷酸化位点的突变不影响 APIP 活性,而潜在锌结合位点的突变则完全消除了其活性。最后,我们表明在短同工型中缺失的 APIP 的 N 端区域对于活性是必需的。总之,这些结果证实了 APIP 参与甲硫氨酸补救途径,该途径在许多生物学功能中发挥关键作用,如癌症、细胞凋亡、微生物增殖和炎症。