Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
Biochemistry. 2010 Jan 26;49(3):404-14. doi: 10.1021/bi901704v.
The generation of H(2) by the use of solar energy is a promising way to supply humankind's energy needs while simultaneously mitigating environmental concerns that arise due to climate change. The challenge is to find a way to connect a photochemical module that harnesses the sun's energy to a catalytic module that generates H(2) with high quantum yields and rates. In this review, we describe a technology that employs a "molecular wire" to connect a terminal [4Fe-4S] cluster of Photosystem I directly to a catalyst, which can be either a Pt nanoparticle or the distal [4Fe-4S] cluster of an [FeFe]- or [NiFe]-hydrogenase enzyme. The keys to connecting these two moieties are surface-located cysteine residues, which serve as ligands to Fe-S clusters and which can be changed through site-specific mutagenesis to glycine residues, and the use of a molecular wire terminated in sulfhydryl groups to connect the two modules. The sulfhydryl groups at the end of the molecular wire form a direct chemical linkage to a suitable catalyst or can chemically rescue a [4Fe-4S] cluster, thereby generating a strong coordination bond. Specifically, the molecular wire can connect the F(B) iron-sulfur cluster of Photosystem I either to a Pt nanoparticle or, by using the same type of genetic modification, to the differentiated iron atom of the distal [4Fe-4S].(Cys)(3)(Gly) cluster of hydrogenase. When electrons are supplied by a sacrificial donor, this technology forms the cathode of a photochemical half-cell that evolves H(2) when illuminated. If such a device were connected to the anode of a photochemical half-cell that oxidizes water, an in vitro solar energy converter could be realized that generates only O(2) and H(2) in the light. A similar methodology can be used to connect Photosystem I to other redox proteins that have surface-located [4Fe-4S] clusters. The controlled light-driven production of strong reductants by such systems can be used to produce other biofuels or to provide mechanistic insights into enzymes catalyzing multielectron, proton-coupled reactions.
利用太阳能生成 H(2) 是一种很有前途的方法,可以满足人类的能源需求,同时减轻因气候变化而产生的环境问题。挑战在于找到一种方法将利用太阳能的光化学模块与以高量子产率和速率生成 H(2) 的催化模块连接起来。在这篇综述中,我们描述了一种利用“分子导线”将光合作用 I 中的末端[4Fe-4S]簇直接连接到催化剂的技术,该催化剂可以是 Pt 纳米颗粒,也可以是[FeFe]-或[NiFe]-氢化酶的远端[4Fe-4S]簇。连接这两个部分的关键是位于表面的半胱氨酸残基,它作为 Fe-S 簇的配体,可以通过定点突变变成甘氨酸残基,并且使用末端带有巯基的分子导线连接两个模块。分子导线末端的巯基基团与合适的催化剂形成直接的化学连接,或者可以通过化学方法拯救[4Fe-4S]簇,从而形成强配位键。具体来说,分子导线可以将光合作用 I 的 F(B)铁-硫簇连接到 Pt 纳米颗粒上,或者通过使用相同类型的遗传修饰,连接到氢化酶的远端[4Fe-4S]簇(Cys)(3)(Gly)区分铁原子上。当电子由牺牲供体提供时,该技术形成光化学半电池的阴极,当被光照时会产生 H(2)。如果这样的装置与光化学半电池的阳极连接,该阳极氧化水,那么可以实现体外太阳能转换器,在光照下仅产生 O(2)和 H(2)。类似的方法可以用于将光合作用 I 连接到具有位于表面的[4Fe-4S]簇的其他氧化还原蛋白。通过这种系统光驱动产生的强还原剂可用于生产其他生物燃料,或为催化多电子、质子耦合反应的酶提供机制见解。