Lowery William R, Portaro Allison C, Jennings G Kane, Cliffel David E
Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235-1822, United States.
Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States.
Biomacromolecules. 2025 May 12;26(5):3180-3185. doi: 10.1021/acs.biomac.5c00263. Epub 2025 Apr 21.
Conductive polymers have been shown to be an effective scaffold for proteins when designing bioelectrochemical systems, particularly for the Photosystem I protein. Utilization of synthetic polymer chemistry has allowed a great deal of tunability within the protein/polymer interface to improve electron transfer from the proteins, ultimately progressing toward direct electron transfer from the active sites. Seeking to address this issue, a new heterogeneous approach is presented to synthesize Photosystem I/polypyrrole (PSI/PPy) composites. The oxidative potential of PSI's P reaction site was leveraged to polymerize pyrrole into a molecular wire, providing a more efficient means of electron transfer to the protein. Over the course of several hours of photopolymerization of Py in a PSI film, PPy not only wired PSI but began incasing the protein within conductive polymer nanoparticles. These resulting composite nanoparticles were extensively characterized by electron microscopy and electrochemical techniques to showcase their synergistic properties.
在设计生物电化学系统时,导电聚合物已被证明是蛋白质的有效支架,特别是对于光系统I蛋白。合成聚合物化学的应用使得蛋白质/聚合物界面具有很大的可调性,以改善蛋白质的电子转移,最终朝着从活性位点直接进行电子转移的方向发展。为了解决这个问题,本文提出了一种新的非均相方法来合成光系统I/聚吡咯(PSI/PPy)复合材料。利用PSI的P反应位点的氧化电位将吡咯聚合成分子导线,为向蛋白质进行电子转移提供了一种更有效的手段。在PSI薄膜中对吡咯进行数小时的光聚合过程中,PPy不仅连接了PSI,还开始将蛋白质包裹在导电聚合物纳米颗粒中。通过电子显微镜和电化学技术对这些所得的复合纳米颗粒进行了广泛表征,以展示它们的协同性质。