Department of Chemistry, The Pennsylvania State University, University Park, PA 16802.
Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802.
Proc Natl Acad Sci U S A. 2024 Aug 20;121(34):e2400267121. doi: 10.1073/pnas.2400267121. Epub 2024 Aug 13.
The fusion of hydrogenases and photosynthetic reaction centers (RCs) has proven to be a promising strategy for the production of sustainable biofuels. Type I (iron-sulfur-containing) RCs, acting as photosensitizers, are capable of promoting electrons to a redox state that can be exploited by hydrogenases for the reduction of protons to dihydrogen (H). While both [FeFe] and [NiFe] hydrogenases have been used successfully, they tend to be limited due to either O sensitivity, binding specificity, or H production rates. In this study, we fuse a peripheral (stromal) subunit of Photosystem I (PS I), PsaE, to an O-tolerant [FeFe] hydrogenase from using a flexible [GGS] linker group (HydA1-PsaE). We demonstrate that the HydA1 chimera can be synthetically activated in vitro to show bidirectional activity and that it can be quantitatively bound to a PS I variant lacking the PsaE subunit. When illuminated in an anaerobic environment, the nanoconstruct generates H at a rate of 84.9 ± 3.1 µmol H mg h. Further, when prepared and illuminated in the presence of O, the nanoconstruct retains the ability to generate H, though at a diminished rate of 2.2 ± 0.5 µmol H mg h. This demonstrates not only that PsaE is a promising scaffold for PS I-based nanoconstructs, but the use of an O-tolerant [FeFe] hydrogenase opens the possibility for an in vivo H generating system that can function in the presence of O.
氢酶与光合反应中心(RCs)的融合已被证明是生产可持续生物燃料的一种很有前途的策略。作为光敏剂的 I 型(含铁硫)RC 能够促进电子达到氧化还原状态,氢酶可以利用这种状态将质子还原为氢气(H)。虽然 [FeFe] 和 [NiFe] 氢酶都已成功使用,但由于对 O 的敏感性、结合特异性或 H 生成速率的限制,它们往往存在局限性。在这项研究中,我们使用灵活的 [GGS] 连接基团(HydA1-PsaE)将 Photosystem I(PSI)的外周(基质)亚基 PsaE 融合到一种耐 O 的 [FeFe] 氢酶中。我们证明 HydA1 嵌合体可以在体外进行合成激活,表现出双向活性,并且可以定量结合缺乏 PsaE 亚基的 PSI 变体。在厌氧环境下被光照时,该纳米结构以 84.9 ± 3.1 µmol H mg h 的速率产生 H。此外,当在 O 存在的情况下制备和光照时,纳米结构仍然能够产生 H,但生成速率降低至 2.2 ± 0.5 µmol H mg h。这不仅表明 PsaE 是基于 PSI 的纳米结构的有前途的支架,而且使用耐 O 的 [FeFe] 氢酶为可以在 O 存在下发挥作用的体内 H 生成系统开辟了可能性。